Skip to main content

Ozone risk for crops and pastures in present and future climates

Abstract

Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329

    PubMed  CAS  Article  Google Scholar 

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water, Air, and Soil Pollution 169:239–254

    CAS  Article  Google Scholar 

  • Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    PubMed  Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO 2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    PubMed  CAS  Article  Google Scholar 

  • Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    PubMed  CAS  Article  Google Scholar 

  • Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719

    PubMed  CAS  Article  Google Scholar 

  • Ali AA, Abdel-Fattah RI (2006) Protection of agricultural crops in Egypt against adverse effects of atmospheric pollutants. I. By using of ethylene diurea. Journal of Agronomy 5:158–166

    Google Scholar 

  • Allen Jr LH, Pan D, Boote KJ, Pickering NB, Jones JW (2003) Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean. Agron J 95:1071–1081

    Google Scholar 

  • Alonso R, Bermejo V, Sanz J, Valls B, Elvira S, Gimeno BS (2007) Stomatal conductance of semi-natural Mediterranean grasslands: implications for the development of ozone critical levels. Environ Pollut 146:692–698

    PubMed  CAS  Article  Google Scholar 

  • Altimir N, Kolari P, Tuovinen J-P, Vesala T, Back J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture. Biogeosciences Discussions 2:1739–1793

    Google Scholar 

  • Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73:1–34

    Article  Google Scholar 

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    CAS  Article  Google Scholar 

  • Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162

    PubMed  CAS  Google Scholar 

  • Ashmore MR (2002) Effects of oxidants at the whole plant and community level. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Chichester, UK, pp 89–118

    Google Scholar 

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    CAS  Article  Google Scholar 

  • Ashmore MR, Ainsworth N (1995) The effects of ozone and cutting on the species composition of artificial grassland communities. Funct Ecol 9:708–712

    Article  Google Scholar 

  • Ashmore M, Toet S, Emberson L (2006) Ozone—a significant threat to future world food production. New Phytol 170:201–204

    PubMed  Article  Google Scholar 

  • Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP - Historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Article  Google Scholar 

  • Aunan K, Berntsen TK, Seip HM (2000) Surface ozone in China and its possible impact on agricultural crop yields. Ambio 29:294–301

    Article  Google Scholar 

  • Auvray M, Bey I (2005) Long-range transport to Europe: seasonal variations and implications for the European ozone budget. J Geophys Res 110:D11303 doi:10.1029/2004JD005503

    Article  CAS  Google Scholar 

  • Baker JT, Gitz DC, Payton P, Wanjura DF, Upchurch DR (2007) Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. Agron J 99:637–644

    Article  Google Scholar 

  • Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens I (ed) Progress in photosynthesis research. Proceedings of the VII International Photosynthesis Congress. Nijhoff, Norwell, pp 221–224

    Google Scholar 

  • Bassin S, Calanca PL, Weidinger T, Gerosa G, Fuhrer J (2004) Modeling seasonal ozone fluxes to grassland and wheat with ODEM: model improvement, testing, and application. Atmos Environ 38:2349–2359

    CAS  Article  Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2007a) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146:678–691

    PubMed  CAS  Article  Google Scholar 

  • Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007b) Nitrogen deposition but not ozone affects productivity and community composition of sub-alpine grassland after three years of treatment. New Phytol 175:523–534

    PubMed  CAS  Article  Google Scholar 

  • Bassin S, Volk M, Werner R, Sörgel K, Buchmann N, Fuhrer J (2008) Effects of combined ozone and nitrogen deposition on the in situ properties of 11 key plant species of a subalpine pasture. Oecologia doi:10.1007/s00442-008-1191-y

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 pp

  • Beilke S, Walasch M (2000) Die Ozonbelastung in Deutschland seit 1990 und Prognose der zukünftigen Entwicklung (The ozone concentration in Germany since 1990 and prognoses fort he future development). Immissionsschutz 4/2000:149–155

    Google Scholar 

  • Bender J, Munifering RB, Lin JC, Weigel HJ (2006) Growth and nutritive quality of Poa pratensis as influenced. Environ Pollut 142:109–115

    PubMed  CAS  Article  Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe. A shape of things to come. Geophys Res Lett 31:L02022

    Article  Google Scholar 

  • Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95

    Article  Google Scholar 

  • Bergweiler C, Manning WJ, Chevone BI (2008) Seasonal and diurnal gas exchange differences in ozone-sensitive milkweed (Asclepias syrica L.) in relation to ozone uptake. Environ Pollut 152:403–415

    PubMed  CAS  Article  Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Google Scholar 

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    CAS  Article  Google Scholar 

  • Booker F, Prior S, Torbert A, Fiscus E, Pursley WA, Hu S (2005) Decomposition of soybean grown under elevated concentrations of CO2 and O3. Glob Chang Biol 11:685–698

    Article  Google Scholar 

  • Bungener P, Ball GR, Nussbaum S, Geissmann M, Grub A, Fuhrer J (1999) Leaf injury characteristics of grassland species exposed to ozone related to soil moisture condition and vapour pressure deficit. New Phytol 142:271–282

    CAS  Article  Google Scholar 

  • Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114:387–394

    PubMed  CAS  Article  Google Scholar 

  • Burkey KO, Wei C, Eason G, Ghosh P, Fenner GP (2000) Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean. Physiol Plant 110:195–200

    CAS  Article  Google Scholar 

  • Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut 143:427–434

    PubMed  CAS  Article  Google Scholar 

  • Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47:1488–1497

    CAS  Article  Google Scholar 

  • Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61

    PubMed  CAS  Article  Google Scholar 

  • Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326

    PubMed  CAS  Article  Google Scholar 

  • Chameides WL, Xingsheng L, Xiaoyan T, Xiuji Z, Chao L, Kiang CS, St. John J, Saylor RD, Liu SC, Lam KS, Wang T, Giorgi F (1999) Is ozone pollution affecting crop yields in China. Geophys Res Lett 26:867–870

    CAS  Article  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    PubMed  CAS  Article  Google Scholar 

  • Chen Z, Wang X, Feng Z, Zheng F, Duan X, Yang W (2008) Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta, China. J Environ Sci 20:320–325

    CAS  Article  Google Scholar 

  • Chevalier A, Gheusi F, Delmas R, Ordóñez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2002. Atmos Chem Phys 7:4311–4326

    CAS  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    PubMed  Article  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule interwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    CAS  Article  Google Scholar 

  • Dai A (2006) Recent climatology, variability and trends in global surface humidity. J Clim 19:3589–3606

    Article  Google Scholar 

  • Dai Z, Edwards GE, Ku MSB (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor bean) by leaf to air vapor pressure deficit. Plant Physiol 99:1426–1434

    PubMed  CAS  Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    PubMed  CAS  Article  Google Scholar 

  • Davison AW, Neufeld HS, Chappelka AH, Wolff K, Finkelstein PL (2003) Interpreting spatial variation in ozone symptoms shown by cutleaf cone flower, Rudbeckia laciniata L. Environ Pollut 125:61–70

    PubMed  CAS  Article  Google Scholar 

  • Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190

    PubMed  CAS  Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587 Available at: http://ipcc-wg1.ucar.edu/wg1/wg1-report.html, last accessed Oct 2008

    Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K, Van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Müller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594

    PubMed  CAS  Article  Google Scholar 

  • Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy. Glob Chang Biol 14:556–564

    Article  Google Scholar 

  • Derwent R (2008) New Directions: prospects for regional ozone in north-west Europe. Atmos Environ 42:1958–1960

    CAS  Article  Google Scholar 

  • Derwent RG, Simmonds PG, O’Doherty S, Stevenson DS, Collins WJ, Sanderson MG, Johnson CE, Dentener F, Cofala J, Mechler R, Amann M (2006) External influences on Europe’s air quality: baseline methane, carbon monoxide and ozone from 1990 to 2030 at Mace Head, Ireland. Atmos Environ 40:844–855

    CAS  Article  Google Scholar 

  • Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station Mace Head, Ireland. Atmos Environ 41:9091–9098

    CAS  Article  Google Scholar 

  • D’Haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    CAS  Article  Google Scholar 

  • Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power. Environ Pollut 156:11–15

    Google Scholar 

  • Elagöz V, Han SS, Manning WJ (2006) Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity. Environ Pollut 140:395–405

    PubMed  Article  CAS  Google Scholar 

  • Eller ASD, Sparks JP (2006) Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant Cell Environ 29:1742–1750

    PubMed  CAS  Article  Google Scholar 

  • Ellingsen K, Gauss M, Van Dingenen R, Dentener FJ, Emberson L, Fiore AM, Schultz MG, Stevenson DS, Ashmore MR, Atherton CS, Bergmann DJ, Bey I, Butler T, Drevet J, Eskes H, Hauglustaine DA, Isaksen ISA, Horowitz LW, Krol M, Lamarque JF, Lawrence MG, Van Noije T, Pyle J, Rast S, Rodriguez J, Savage N, Strahan S, Sudo K, Szopa S, Wild O (2008) Global ozone and air quality: a multi-model assessment of risks to human health and crops. Atmos Chem Phys Discuss 8:2163–2223

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    CAS  Article  Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    PubMed  CAS  Article  Google Scholar 

  • Emberson LD, Ashmore MR, Simpson D, Tuovinen J-P, Cambridge HM (2001a) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130:577–582

    Article  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, Van Tienhoven M, De Bauer L, Domingos M (2001b) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118

    CAS  Article  Google Scholar 

  • Emberson LD, Ashmore MR, Murray F (2003) Air pollution impacts on crops and forests: a global assessment. Imperial College, London

    Google Scholar 

  • EMEP (2004) EMEP Assessment Part I—European perspective. In: Lövblad G, Tarrasón L, Tørseth K, Dutchak S (eds). http://www.emep.int, last accessed Oct 2008

  • Engardt M (2008) Modelling of near-surface ozone over South Asia. J Atmos Chem 59:61–80

    CAS  Article  Google Scholar 

  • Erice G, Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M (2007) Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa. Physiol Plant 130:33–45

    CAS  Article  Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Chang Biol 13:1737–1747

    Article  Google Scholar 

  • Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Change 73:345–373

    CAS  Article  Google Scholar 

  • Feng Z, Jin M, Zhang F, Huang Y (2003) Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River delta. J Environ Sci 15:360–362

    CAS  Google Scholar 

  • Fiscus MD, Miller JE, Booker FL, Heagle AS, Reid CD (2002) The impact of ozone and other limitations on the crop productivity response to CO2. Technology 8:181–192

    Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011

    CAS  Article  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in ozone sensitivity. Environ Exp Bot 61:190–198

    CAS  Article  Google Scholar 

  • Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model. J Geophys Res 111:D12302

    Article  CAS  Google Scholar 

  • Fowler D, Flechard C, Cape JN, Storeton-West RL, Coyle M (2001) Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air, and Soil Pollution 130:63–74

    CAS  Article  Google Scholar 

  • Fuhrer J (2000) Introduction to the special issue on ozone risk analysis for vegetation in Europe. Environ Pollut 109:359–360

    PubMed  CAS  Article  Google Scholar 

  • Fuhrer J (2003) Elevated CO2, ozone, and global climate change: agroecosystem responses. Agric Ecosyst Environ 97:1–20

    CAS  Article  Google Scholar 

  • Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154

    PubMed  CAS  Article  Google Scholar 

  • Fuhrer J, Skärby L, Ashmore M (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106

    PubMed  CAS  Article  Google Scholar 

  • Fuhrer J (1997) Ozone sensitivity of managed pasture. In: Cheremisinoff PN (ed) Ecological advances and environmental impact assessment, advances in environmental control technology series. Gulf, Houston, pp 681–706

    Google Scholar 

  • Gauss M, Ellingsen K, Isaksen ISA, Dentener FJ, Stevenson DS, Amann M, Cofala J (2007) Changes in nitrogen dioxide and ozone over southeast and east Asia between year 2000 and 2030 with fixed meteorology Source. Terr Atmos Ocean Sci 18:475–492

    Article  Google Scholar 

  • Giorgi F, Meleux F (2007) Modelling the regional effects of climate change on air quality. Comptes Rendues Geoscience 339:721–733

    CAS  Article  Google Scholar 

  • Grantz DA, Zhang XJ, Massman WJ, Delany A, Pederson JR (1997) Ozone deposition to a cotton (Gossypium hirsutum L.) field: stomatal and surface wetness effects during the California ozone deposition experiment. Agric For Meteorol 85:19–31

    Article  Google Scholar 

  • Grantz DA, Gunn S, Vu HB (2006) O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant Cell Environ 29:1193–1209

    PubMed  CAS  Article  Google Scholar 

  • Grantz DA, Shrestha A, Vu H-B (2008) Early vigor and ozone response in horseweed (Conyza canadensis) biotypes differing in glyphosate resistance. Weed Sci 56:224–230

    CAS  Article  Google Scholar 

  • Grewe V (2007) Impact of climate variability on tropospheric ozone. Sci Total Environ 374:167–181

    PubMed  CAS  Article  Google Scholar 

  • Grulke NE, Paoletti E, Heath RL (2007) Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ Pollut 146:640–647

    PubMed  CAS  Article  Google Scholar 

  • Hacour A, Craigon J, Vandermeiren K, Ojanperä K, Pleijel H, Danielsson H, Högy P, Finnan J, Bindi M (2002) CO2 and ozone effects on canopy development of potato crops across Europe. Eur J Agron 17:257–272

    CAS  Article  Google Scholar 

  • Harmens H, Mills G, Emberson LD, Ashmore MR (2007) Implications of climate change for the stomatal flux of ozone: a case study for winter wheat. Environ Pollut 146:763–770

    PubMed  CAS  Article  Google Scholar 

  • Hassan IA (2006) Physiological and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O3 and antioxidant chemicals: possible roles of antioxidant enzymes. Ann Appl Biol 148:197–206

    CAS  Article  Google Scholar 

  • Hauglustaine DA, Lathière J, Szopa S, Folberth GA (2005) Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys Res Lett 32:L24807 doi:10.1029/2005GL024031

  • He YJ, Uno I, Wang ZF, Pochanart P, Li J, Akimoto H (2008) Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region. Atmos Chem Phys Discuss 8:14927–14955

    Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155:453–463

    Google Scholar 

  • Holopainen JK (2002) Aphid response to elevated ozone and CO2. Entomol Exp Appl 104:137–142

    CAS  Article  Google Scholar 

  • Hough AM, Derwent RG (1990) Changes in the global concentration of tropospheric ozone due to human activities. Nature 344:645–648

    CAS  Article  Google Scholar 

  • Huixiang W, Kiang CS, Xiaoyan T, Xiuji Z, Chameides WL (2005) Surface ozone: a likely threat to crops in Yangtze delta of China. Atmos Environ 39:3843–3850

    Article  CAS  Google Scholar 

  • ICP Vegetation (2007) International Cooperative Programme on Effects of Air Pollution on natural vegetation and crops, Annual Report 2006/2007 (http://icpvegetation.ceh.ac.uk/, last accessed Oct 2008)

  • IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 pp

    Google Scholar 

  • Islam KR, Mulchi CL, Ali AA (1999) Tropospheric carbon dioxide or ozone enrichments and moisture effects on soil organic carbon quality. J Environ Qual 28:1629–1636

    CAS  Google Scholar 

  • Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US (2007). Atmos Environ 41:5452–5463

    CAS  Article  Google Scholar 

  • Jäggi M, Fuhrer J (2007) Oxygen and carbon isotopic signatures reveal a long-term effect of free-air ozone enrichment on leaf conductance in semi-natural grassland. Atmos Environ 41:8811–8817

    Article  CAS  Google Scholar 

  • Jäggi M, Ammann C, Neftel A, Fuhrer J (2006) Environmental control of ozone concentration profiles in a grassland canopy. Atmos Environ 40:5496–5507

    Article  CAS  Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans R Soc 273:593–610

    CAS  Article  Google Scholar 

  • Jaudé MB, Katerij N, Mastrorilli M, Rana G (2008) Analysis of the effect of ozone on soybean in the Mediterranean region. I. The consequences on crop-water status. Eur J Agron 28:508–518

    Article  CAS  Google Scholar 

  • Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445

    CAS  Article  Google Scholar 

  • Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439

    Article  Google Scholar 

  • Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels. Atmos Chem Phys 6:51–66

    CAS  Google Scholar 

  • Kanerva T, Palojärvi A, Rämö K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510

    CAS  Article  Google Scholar 

  • Karlsson PE, Tang L, Sundberg J, Chen D, Lindskog A, Pleijel H (2007) Increasing risk for negative ozone impacts on vegetation in northern Sweden. Environ Pollut 150:96–106

    PubMed  CAS  Article  Google Scholar 

  • Keller F, Bassin S, Ammann C, Fuhrer J (2007) High-resolution modelling of AOT40 and stomatal ozone uptake in wheat and grassland: a comparison between 2000 and the hot summer of 2003 in Switzerland. Environ Pollut 146:671–677

    PubMed  CAS  Article  Google Scholar 

  • Keutgen AJ, Pawelzik E (2008) Apoplastic antioxidative system responses to ozone stress in strawberry leaves. J Plant Physiol 165:868–875

    PubMed  CAS  Article  Google Scholar 

  • Kim JS, Chappelka AH, Miller-Goodman MS (1998) Decomposition of blackberry and broomsedge bluestem as influenced by ozone. J Environ Qual 27:953–960

    CAS  Google Scholar 

  • Klepper B, Rickman RW, Waldman S, Chevalier P (1998) The physiological life cycle of wheat: its use in breeding and crop management. Euphytica 100:341–347

    Article  Google Scholar 

  • Kölliker R, Bassin S, Schneider D, Widmer F, Fuhrer J (2008) Elevated ozone affects the genetic composition of Plantago lanceolata L. populations. Environ Pollut 152:380–386

    PubMed  Article  CAS  Google Scholar 

  • Kunkel KE, Huang H-C, Liang X-Z, Lin J-T, Wuebbles D, Tao Z, Williams A, Caughey M, Zhu J, Hayhoe K (2008) Sensitivity of future ozone concentrations in the northeast USA to regional climate change. Mitig Adapt Strategies Glob Chang 13:597–606

    Article  Google Scholar 

  • Lelieveld J, Dentener FJ (2000) What controls tropospheric ozone. J Geophys Res 105(D3):3531–3551

    CAS  Article  Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    CAS  Article  Google Scholar 

  • Lefohn AS, Oltmans SJ, Dann T, Singh HB (2001) Present-day variability of background ozone in the lower troposphere. J Geophys Res 106:9945–9958

    CAS  Article  Google Scholar 

  • Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707

    PubMed  CAS  Article  Google Scholar 

  • Luo Y, Zhou X (2006) Soil respiration and the environment. Academic/Elsevier, San Diego

    Google Scholar 

  • Lüscher A, Fuhrer J, Newton PCD (2005) Global atmospheric change and its effect on managed grassland systems. In: McGilloway DC (ed) Grassland—a global resource. Wageningen Academic, NL, pp 251–264

    Google Scholar 

  • Maherali H, Johnson HB, Jackson RB (2003) Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 26:1297–1306

    Article  Google Scholar 

  • Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment more mechanistic for forest trees. Environ Pollut 156:567–582

    Google Scholar 

  • Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • McKee IF, Long SP (2001) Plant growth regulators control ozone damage to wheat yield. New Phytol 152:41–51

    CAS  Article  Google Scholar 

  • Meleux F, Solmon F, Giorgi F (2007) Increase in summer European ozone amounts due to climate change. Atmos Environ 41:7577–7587

    CAS  Article  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    CAS  Article  Google Scholar 

  • Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584

    CAS  Article  Google Scholar 

  • Moldau H, Bichele I (2002) Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces. Planta 214:484–487

    PubMed  CAS  Article  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    CAS  Article  Google Scholar 

  • Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357

    PubMed  CAS  Article  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    PubMed  Article  Google Scholar 

  • Muntifering RB, Manning WJ, Lin JC, Robinson GB (2006) Short-term exposure to ozone altered the relative feed value of an alfalfa cultivar. Environ Pollut 140:1–3

    PubMed  CAS  Article  Google Scholar 

  • Musselman RC, McCool PM, Lefohn AS (1994) Ozone descriptors for an air quality standard to protect vegetation. J Air Waste Manage Assoc 44:1383–1390

    CAS  Google Scholar 

  • Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888

    CAS  Article  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Nijs I, Ferris R, Blum H, Hendrey G, Impens I (1997) Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ 20:1041–1050

    Article  Google Scholar 

  • Nussbaum S, Geissmann M, Fuhrer J (1995) Ozone-exposure-response relationships for mixtures of perennial ryegrass and white clover depend on ozone exposure patterns. Atmos Environ 29:989–995

    CAS  Article  Google Scholar 

  • Nussbaum S, Remund J, Rihm B, Mieglitz K, Gurtz J, Fuhrer J (2003) High-resolution spatial analysis of stomatal ozone uptake in arable crops and pastures. Environ Int 29:385–392

    PubMed  CAS  Article  Google Scholar 

  • Oltmans SJ, Lefohn AS, Harris JM, Galbally I, Scheele HE, Bodeker G, Brunke E, Claude H, Tarasick D, Johnson BJ, Simmonds P, Shadwick D, Anlauf K, Hayden K, Schmidlin F, Fujimoto T, Akagi K, Meyer C, Nichol S, Davies J, Redondas A, Cuevas E (2006) Long-term changes in tropospheric ozone. Atmos Environ 40:3156–3173

    CAS  Article  Google Scholar 

  • Ordóñez C, Mathis H, Furger M, Henne S, Hüglin C, Staehelin J, Prévôt ASH (2005) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos Chem Phys 5:1187–1203

    Google Scholar 

  • Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526

    Article  Google Scholar 

  • Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95

    PubMed  CAS  Article  Google Scholar 

  • Parrish DD, Millet DB, Goldstein AH (2008) Increasing ozone concentrations in marine boundary layer air inflow at the west coasts of North America and Europe. Atmos Chem Phys Discuss 8:13847–13901

    Google Scholar 

  • Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67

    Article  Google Scholar 

  • Philipona R, Du B, Marty C, Ohmura A, Wild M (2004) Radiative forcing—measured at Earth’s surface—corroborate the increasing greenhouse effect. Geophys Res Lett 31:L03202

    Article  CAS  Google Scholar 

  • Philipona R, Dürr B, Ohmura A, Ruckstuhl C (2005) Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys Res Lett 32:L19809

    Article  Google Scholar 

  • Piikki K, De Temmerman L, Ojanperä K Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28:245–254

    CAS  Article  Google Scholar 

  • Pleijel H, Danielsson H, Gelang, Sild E, Selldén G (1998) Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agric Ecosyst Environ 70:61–68

    CAS  Article  Google Scholar 

  • Pleijel H, Mortensen L, Fuhrer J, Ojanperä K, Danielsson H (1999) Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric Ecosyst Environ 72:265–270

    CAS  Article  Google Scholar 

  • Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Selldén G (2006) Differential ozone sensitivity in an old and modern Swedish wheat cultivar—grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot 56:63–71

    CAS  Article  Google Scholar 

  • Pleijel H, Danielsson H, Emberson L, Ashmore MR, Mills G (2007) Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos Environ 41:3022–3040

    CAS  Article  Google Scholar 

  • Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467

    PubMed  Article  Google Scholar 

  • Prather M, Gauss M, Berntsen T, Isaksen I, Sundet J, Bey I, Brasseur G, Dentener F, Derwent R, Stevenson D, Grenfell L, Hauglustaine D, Horowitz L, Jacob D, Mickley L, Lawrence M, von Kuhlmann R, Muller J-F, Pitari G, Rogers H, Johnson M, Pyle J, Law K, van Weele M, Wild O (2003) Fresh air in the 21st century. Geophys Res Lett 30:1100 doi:10.1029/2002GL016285

    Article  Google Scholar 

  • Pritchard J, Griffiths B, Hunt EJ (2007) Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted. Glob Chang Biol 13:1616–1629

    Article  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721

    CAS  Article  Google Scholar 

  • Racherla PN, Adams PJ (2008) The response of surface ozone to climate change over the Eastern United States. Atmos Chem and Phys 8:871–885

    CAS  Article  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    CAS  Article  Google Scholar 

  • Reid CD, Fiscus EL (2008) Ozone and density affect the response of biomass and see yield to elevated CO2 in rice. Glob Chang Biol 14:60–76

    Google Scholar 

  • Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy 35:5370–5383

    Article  Google Scholar 

  • Ren W, Tian H, Chen G, Liu M, Zhang C, Chappelka AH, Pan S (2007a) Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China’s grassland ecosystems from 1961-2000. Environ Pollut 149:327–335

    PubMed  CAS  Article  Google Scholar 

  • Ren W, Tian H, Liu M, Zhang C, Chen G, Pan S, Felzer B, Xu X (2007b) Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J Geophys Res D: Atmospheres 112:D22S09

    Article  CAS  Google Scholar 

  • Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259

    CAS  Article  Google Scholar 

  • Reynolds MP, Saint Pierre C, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47:S172–S189

    Article  Google Scholar 

  • Rinnan R, Holopainen T (2004) Ozone effects on the ultrastructure of peatland plants: sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Ann Bot 94:623–634

    PubMed  Article  Google Scholar 

  • Sandermann H (2008) Ecotoxicology of ozone: bioactivation of extracellular ascorbate. Biochem Biophys Res Commun 366:271–274

    PubMed  CAS  Article  Google Scholar 

  • Sanderson MG, Collins WJ, Hemming DL, Betts RA (2007) Stomatal conductance changes du to increasing carbon dioxide levels: projected impact on surface ozone levels. Tellus 59B:404–411

    CAS  Google Scholar 

  • Sanderson MG, Jones CD, Collins WJ, Johnson CE, Derwent RG (2003) Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett 30:1936 doi:10.1029/2003GL017642

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    PubMed  CAS  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336

    PubMed  Article  CAS  Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708

    PubMed  CAS  Article  Google Scholar 

  • Schroeder JB, Gray ME, Ratcliffe ST, Estes RE, Long SP (2006) Effects of elevated CO2 and O3 on a variant of the western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol 35:637–644

    CAS  Article  Google Scholar 

  • Schwanz P, Polle A (2001) Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba x tremula). Environ Exp Bot, pp 43–53

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    PubMed  CAS  Article  Google Scholar 

  • Shrestha A, Grantz DA (2005) Ozone impacts on competition between tomato and yellow nutsedge: above- and below-ground effects. Crop Sci 45:1587–1595

    CAS  Article  Google Scholar 

  • Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos Environ 38:4769–4778

    CAS  Article  Google Scholar 

  • Sinclair T, Fiscus E, Wherley B, Durham M, Rufty T (2007) Atmospheric vapor pressure deficit is critical in predicting growth response of “cool-season” grass Festuca arundinacea to temperature change. Planta 227:273–276

    PubMed  CAS  Article  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794

    PubMed  CAS  Article  Google Scholar 

  • Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43

    CAS  Article  Google Scholar 

  • Soja G, Barnes JD, Posch M, Vandermeiren K, Pleijel H, Mills G (2000) Phenological weighting of ozone exposures in the calculation of critical levels for wheat, bean and plantain. Environ Pollut 109:517–524

    PubMed  CAS  Article  Google Scholar 

  • Staehelin J (2001) Ozone measurements and trends (troposphere), in Encyclopedia of physical science and technology, vol 11, 3rd edn. Academic, New york pp 539–561

  • Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque JF, Lawrence MG, Montanaro V, Muller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res—Atmosphere 111(D8):D08301

    Article  CAS  Google Scholar 

  • Stevenson D, Doherty R, Sanderson M, Johnson C, Collins B, Derwent D (2005) Impacts of climate change and variability on tropospheric ozone and its precursors. Faraday Discuss 130:1–17

    Article  CAS  Google Scholar 

  • Szilagyi J, Katul GG, Parlange MB (2001) Evapotranspiration intensifies over the conterminous United States. J Water Resour Plann Manage 127:354–362

    Article  Google Scholar 

  • Szopa S, Hauglustaine DA (2007) Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels. Comptes Rendues Geoscience 339:709–720

    CAS  Article  Google Scholar 

  • Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev, Genet 9:444–457

    CAS  Article  Google Scholar 

  • Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531

    PubMed  CAS  Article  Google Scholar 

  • Thwaites RH, Ashmore MR, Morton AJ, Pakeman RJ (2006) The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environ Pollut 144:500–509

    PubMed  CAS  Article  Google Scholar 

  • Tingey DT, Rodecap KD, Lee EH, Hogsett WE, Gregg JW (2002) Pod development increases the ozone sensitivity of Phaseolus vulgaris. Water Air Soil Pollut 139:325–341

    CAS  Article  Google Scholar 

  • Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

    PubMed  CAS  Article  Google Scholar 

  • Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104:19686–19690

    PubMed  CAS  Article  Google Scholar 

  • UNECE (2004) UNECE Convention on Long-Range Transboundary Air Pollution. Manual on methodologies and criteria on mapping critical levels and loads and air pollution effects, risks and trends (http://icpmapping.org/cms/zeigeBereich/11/manual_english.html, last accessed Oct 2008)

  • USEPA (2006) U.S. EPA. Air quality criteria for ozone and related photochemical oxidants (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/004aF-cF

  • Vandermeiren K, Black C, Pleijel H, De Temmerman L (2005) Impact of rising tropospheric ozone on potato: effects on photosynthesis, growth, productivity and yield quality. Plant Cell Environ 28:982–996

    CAS  Article  Google Scholar 

  • Van Tienhoven AM, Zunckel M, Emberson L, Koosailee A, Otter L (2006) Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environ Pollut 140:220–230

    PubMed  Article  CAS  Google Scholar 

  • Vautard R, Hauglustaine D (2007) Impact of global climate change on regional air quality: introduction to the thematic issue. Comptes Rendues Geoscience 339:703–708

    CAS  Article  Google Scholar 

  • Vautard R, Beekmann M, Desplat J, Hodzic A, Morel S (2007) Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. Comptes Rendues Geoscience 339:747–763

    CAS  Article  Google Scholar 

  • Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442

    CAS  Article  Google Scholar 

  • Volk M, Geissmann M, Blatter A, Contat F, Fuhrer J (2003) Design and performance of a free-air exposure system to study long-term effects of ozone on grasslands. Atmos Environ 37:1341–1350

    CAS  Article  Google Scholar 

  • Volk M, Bungener P, Montani M, Contat F, Fuhrer J (2006) Grassland yield declined by a quarter in five years of free-air ozone fumigation. Glob Chang Biol 12:74–83

    Article  Google Scholar 

  • Vorne V, Ojanperä K, De Temmerman L, Bindi M, Högy P, Jones MB, Lawson T, Persson K (2002) Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment 'CHIP-project’. Eur J Agron 17:369–381

    CAS  Article  Google Scholar 

  • Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ 371:304–313

    PubMed  CAS  Article  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402

    CAS  Article  Google Scholar 

  • Wang X, Manning W, Feng Z, Zhu Y (2007a) Ground-level ozone in China: distribution and effects on crop yields. Environ Pollut 147:394–400

    PubMed  CAS  Article  Google Scholar 

  • Wang X, Zheng Q, Yao F, Chen Z, Feng Z, Manning WJ (2007b) Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environ Pollut 148:390–395

    PubMed  CAS  Article  Google Scholar 

  • Wang X, Zheng Q, Feng Z, Xie J, Feng Z, Ouyang Z, Manning WJ (2008) Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China. Environ Pollut, in press

  • Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9

    PubMed  CAS  Article  Google Scholar 

  • Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–713

    PubMed  CAS  Article  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162

    PubMed  CAS  Article  Google Scholar 

  • Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys Discuss 8:215–243

    Article  Google Scholar 

  • Yu G-R, Zhuang J, Yu Z-L (2001) An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. J Plant Physiol 158:861–874

    CAS  Article  Google Scholar 

  • Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8:369–387

    CAS  Google Scholar 

  • Zhang L, Vet R, Brook JR, Legge AH (2006) Factors affecting stomatal uptake of ozone by different canopies and a comparison between dose and exposure. Sci Total Environ 370:117–132

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgment

The author thanks Max Hansson and three anonymous reviewers for their constructive comments. This review was produced in the framework of the Swiss National Science Foundation funded project GRASS—Climate Change and Food Production, a contribution to the National Competence Centre for Research ‘NCCR Climate’ and it contributes to the UNECE ICP Vegetation Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Fuhrer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fuhrer, J. Ozone risk for crops and pastures in present and future climates. Naturwissenschaften 96, 173–194 (2009). https://doi.org/10.1007/s00114-008-0468-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-008-0468-7

Keywords

  • Ozone
  • Crops
  • Pastures
  • Climate change
  • Yield loss