Advertisement

Naturwissenschaften

, Volume 96, Issue 2, pp 173–194 | Cite as

Ozone risk for crops and pastures in present and future climates

  • Jürg FuhrerEmail author
Review

Abstract

Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.

Keywords

Ozone Crops Pastures Climate change Yield loss 

Notes

Acknowledgment

The author thanks Max Hansson and three anonymous reviewers for their constructive comments. This review was produced in the framework of the Swiss National Science Foundation funded project GRASS—Climate Change and Food Production, a contribution to the National Competence Centre for Research ‘NCCR Climate’ and it contributes to the UNECE ICP Vegetation Programme.

References

  1. Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329PubMedCrossRefGoogle Scholar
  2. Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water, Air, and Soil Pollution 169:239–254CrossRefGoogle Scholar
  3. Ainsworth EA (2008) Rice production in a changing climate: a meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob Chang Biol 14:1642–1650CrossRefGoogle Scholar
  4. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372PubMedCrossRefGoogle Scholar
  5. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO 2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270PubMedCrossRefGoogle Scholar
  6. Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19PubMedCrossRefGoogle Scholar
  7. Akimoto H (2003) Global air quality and pollution. Science 302:1716–1719PubMedCrossRefGoogle Scholar
  8. Ali AA, Abdel-Fattah RI (2006) Protection of agricultural crops in Egypt against adverse effects of atmospheric pollutants. I. By using of ethylene diurea. Journal of Agronomy 5:158–166Google Scholar
  9. Allen Jr LH, Pan D, Boote KJ, Pickering NB, Jones JW (2003) Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean. Agron J 95:1071–1081Google Scholar
  10. Alonso R, Bermejo V, Sanz J, Valls B, Elvira S, Gimeno BS (2007) Stomatal conductance of semi-natural Mediterranean grasslands: implications for the development of ozone critical levels. Environ Pollut 146:692–698PubMedCrossRefGoogle Scholar
  11. Altimir N, Kolari P, Tuovinen J-P, Vesala T, Back J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture. Biogeosciences Discussions 2:1739–1793Google Scholar
  12. Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73:1–34CrossRefGoogle Scholar
  13. Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228CrossRefGoogle Scholar
  14. Arneth A, Schurgers G, Hickler T, Miller PA (2008) Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol 10:150–162PubMedGoogle Scholar
  15. Ashmore MR (2002) Effects of oxidants at the whole plant and community level. In: Bell JNB, Treshow M (eds) Air pollution and plant life. Wiley, Chichester, UK, pp 89–118Google Scholar
  16. Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964CrossRefGoogle Scholar
  17. Ashmore MR, Ainsworth N (1995) The effects of ozone and cutting on the species composition of artificial grassland communities. Funct Ecol 9:708–712CrossRefGoogle Scholar
  18. Ashmore M, Toet S, Emberson L (2006) Ozone—a significant threat to future world food production. New Phytol 170:201–204PubMedCrossRefGoogle Scholar
  19. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J-M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) HISTALP - Historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46CrossRefGoogle Scholar
  20. Aunan K, Berntsen TK, Seip HM (2000) Surface ozone in China and its possible impact on agricultural crop yields. Ambio 29:294–301CrossRefGoogle Scholar
  21. Auvray M, Bey I (2005) Long-range transport to Europe: seasonal variations and implications for the European ozone budget. J Geophys Res 110:D11303 doi: 10.1029/2004JD005503 CrossRefGoogle Scholar
  22. Baker JT, Gitz DC, Payton P, Wanjura DF, Upchurch DR (2007) Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. Agron J 99:637–644CrossRefGoogle Scholar
  23. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens I (ed) Progress in photosynthesis research. Proceedings of the VII International Photosynthesis Congress. Nijhoff, Norwell, pp 221–224Google Scholar
  24. Bassin S, Calanca PL, Weidinger T, Gerosa G, Fuhrer J (2004) Modeling seasonal ozone fluxes to grassland and wheat with ODEM: model improvement, testing, and application. Atmos Environ 38:2349–2359CrossRefGoogle Scholar
  25. Bassin S, Volk M, Fuhrer J (2007a) Factors affecting the ozone sensitivity of temperate European grasslands: an overview. Environ Pollut 146:678–691PubMedCrossRefGoogle Scholar
  26. Bassin S, Volk M, Suter M, Buchmann N, Fuhrer J (2007b) Nitrogen deposition but not ozone affects productivity and community composition of sub-alpine grassland after three years of treatment. New Phytol 175:523–534PubMedCrossRefGoogle Scholar
  27. Bassin S, Volk M, Werner R, Sörgel K, Buchmann N, Fuhrer J (2008) Effects of combined ozone and nitrogen deposition on the in situ properties of 11 key plant species of a subalpine pasture. Oecologia doi: 10.1007/s00442-008-1191-y
  28. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva, 210 ppGoogle Scholar
  29. Beilke S, Walasch M (2000) Die Ozonbelastung in Deutschland seit 1990 und Prognose der zukünftigen Entwicklung (The ozone concentration in Germany since 1990 and prognoses fort he future development). Immissionsschutz 4/2000:149–155Google Scholar
  30. Bender J, Munifering RB, Lin JC, Weigel HJ (2006) Growth and nutritive quality of Poa pratensis as influenced. Environ Pollut 142:109–115PubMedCrossRefGoogle Scholar
  31. Beniston M (2004) The 2003 heat wave in Europe. A shape of things to come. Geophys Res Lett 31:L02022CrossRefGoogle Scholar
  32. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95CrossRefGoogle Scholar
  33. Bergweiler C, Manning WJ, Chevone BI (2008) Seasonal and diurnal gas exchange differences in ozone-sensitive milkweed (Asclepias syrica L.) in relation to ozone uptake. Environ Pollut 152:403–415PubMedCrossRefGoogle Scholar
  34. Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59Google Scholar
  35. Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447CrossRefGoogle Scholar
  36. Booker F, Prior S, Torbert A, Fiscus E, Pursley WA, Hu S (2005) Decomposition of soybean grown under elevated concentrations of CO2 and O3. Glob Chang Biol 11:685–698CrossRefGoogle Scholar
  37. Bungener P, Ball GR, Nussbaum S, Geissmann M, Grub A, Fuhrer J (1999) Leaf injury characteristics of grassland species exposed to ozone related to soil moisture condition and vapour pressure deficit. New Phytol 142:271–282CrossRefGoogle Scholar
  38. Burkey KO, Eason G (2002) Ozone tolerance in snap bean is associated with elevated ascorbic acid in the leaf apoplast. Physiol Plant 114:387–394PubMedCrossRefGoogle Scholar
  39. Burkey KO, Wei C, Eason G, Ghosh P, Fenner GP (2000) Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean. Physiol Plant 110:195–200CrossRefGoogle Scholar
  40. Burkey KO, Neufeld HS, Souza L, Chappelka AH, Davison AW (2006) Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environ Pollut 143:427–434PubMedCrossRefGoogle Scholar
  41. Burkey KO, Booker FL, Pursley WA, Heagle AS (2007) Elevated carbon dioxide and ozone effects on peanut: II. Seed yield and quality. Crop Sci 47:1488–1497CrossRefGoogle Scholar
  42. Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD (2008) Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol 179:55–61PubMedCrossRefGoogle Scholar
  43. Chakraborty S, Tiedemann AV, Teng PS (2000) Climate change: potential impact on plant diseases. Environ Pollut 108:317–326PubMedCrossRefGoogle Scholar
  44. Chameides WL, Xingsheng L, Xiaoyan T, Xiuji Z, Chao L, Kiang CS, St. John J, Saylor RD, Liu SC, Lam KS, Wang T, Giorgi F (1999) Is ozone pollution affecting crop yields in China. Geophys Res Lett 26:867–870CrossRefGoogle Scholar
  45. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689PubMedCrossRefGoogle Scholar
  46. Chen Z, Wang X, Feng Z, Zheng F, Duan X, Yang W (2008) Effects of elevated ozone on growth and yield of field-grown rice in Yangtze River Delta, China. J Environ Sci 20:320–325CrossRefGoogle Scholar
  47. Chevalier A, Gheusi F, Delmas R, Ordóñez C, Sarrat C, Zbinden R, Thouret V, Athier G, Cousin J-M (2007) Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for western Europe over the period 2001–2002. Atmos Chem Phys 7:4311–4326Google Scholar
  48. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365PubMedCrossRefGoogle Scholar
  49. Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule interwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970CrossRefGoogle Scholar
  50. Dai A (2006) Recent climatology, variability and trends in global surface humidity. J Clim 19:3589–3606CrossRefGoogle Scholar
  51. Dai Z, Edwards GE, Ku MSB (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (Castor bean) by leaf to air vapor pressure deficit. Plant Physiol 99:1426–1434PubMedCrossRefGoogle Scholar
  52. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173PubMedCrossRefGoogle Scholar
  53. Davison AW, Neufeld HS, Chappelka AH, Wolff K, Finkelstein PL (2003) Interpreting spatial variation in ozone symptoms shown by cutleaf cone flower, Rudbeckia laciniata L. Environ Pollut 125:61–70PubMedCrossRefGoogle Scholar
  54. Dawson JJC, Smith P (2007) Carbon losses from soil and its consequences for land-use management. Sci Total Environ 382:165–190PubMedCrossRefGoogle Scholar
  55. Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587 Available at: http://ipcc-wg1.ucar.edu/wg1/wg1-report.html, last accessed Oct 2008Google Scholar
  56. Dentener F, Stevenson D, Ellingsen K, Van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaksen ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Müller JF, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Strahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594PubMedCrossRefGoogle Scholar
  57. Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy. Glob Chang Biol 14:556–564CrossRefGoogle Scholar
  58. Derwent R (2008) New Directions: prospects for regional ozone in north-west Europe. Atmos Environ 42:1958–1960CrossRefGoogle Scholar
  59. Derwent RG, Simmonds PG, O’Doherty S, Stevenson DS, Collins WJ, Sanderson MG, Johnson CE, Dentener F, Cofala J, Mechler R, Amann M (2006) External influences on Europe’s air quality: baseline methane, carbon monoxide and ozone from 1990 to 2030 at Mace Head, Ireland. Atmos Environ 40:844–855CrossRefGoogle Scholar
  60. Derwent RG, Simmonds PG, Manning AJ, Spain TG (2007) Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station Mace Head, Ireland. Atmos Environ 41:9091–9098CrossRefGoogle Scholar
  61. D’Haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632CrossRefGoogle Scholar
  62. Dizengremel P, Le Thiec D, Bagard M, Jolivet Y (2008) Ozone risk assessment for plants: central role of metabolism-dependent changes in reducing power. Environ Pollut 156:11–15Google Scholar
  63. Elagöz V, Han SS, Manning WJ (2006) Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity. Environ Pollut 140:395–405PubMedCrossRefGoogle Scholar
  64. Eller ASD, Sparks JP (2006) Predicting leaf-level fluxes of O3 and NO2: the relative roles of diffusion and biochemical processes. Plant Cell Environ 29:1742–1750PubMedCrossRefGoogle Scholar
  65. Ellingsen K, Gauss M, Van Dingenen R, Dentener FJ, Emberson L, Fiore AM, Schultz MG, Stevenson DS, Ashmore MR, Atherton CS, Bergmann DJ, Bey I, Butler T, Drevet J, Eskes H, Hauglustaine DA, Isaksen ISA, Horowitz LW, Krol M, Lamarque JF, Lawrence MG, Van Noije T, Pyle J, Rast S, Rodriguez J, Savage N, Strahan S, Sudo K, Szopa S, Wild O (2008) Global ozone and air quality: a multi-model assessment of risks to human health and crops. Atmos Chem Phys Discuss 8:2163–2223Google Scholar
  66. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I, Shibahara T, Inanaga S, Tanaka K (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65CrossRefGoogle Scholar
  67. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  68. Emberson LD, Ashmore MR, Simpson D, Tuovinen J-P, Cambridge HM (2001a) Modelling and mapping ozone deposition in Europe. Water Air Soil Pollut 130:577–582CrossRefGoogle Scholar
  69. Emberson LD, Ashmore MR, Murray F, Kuylenstierna JCI, Percy KE, Izuta T, Zheng Y, Shimizu H, Sheu BH, Liu CP, Agrawal M, Wahid A, Abdel-Latif NM, Van Tienhoven M, De Bauer L, Domingos M (2001b) Impacts of air pollutants on vegetation in developing countries. Water Air Soil Pollut 130:107–118CrossRefGoogle Scholar
  70. Emberson LD, Ashmore MR, Murray F (2003) Air pollution impacts on crops and forests: a global assessment. Imperial College, LondonGoogle Scholar
  71. EMEP (2004) EMEP Assessment Part I—European perspective. In: Lövblad G, Tarrasón L, Tørseth K, Dutchak S (eds). http://www.emep.int, last accessed Oct 2008
  72. Engardt M (2008) Modelling of near-surface ozone over South Asia. J Atmos Chem 59:61–80CrossRefGoogle Scholar
  73. Erice G, Aranjuelo I, Irigoyen JJ, Sánchez-Díaz M (2007) Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa. Physiol Plant 130:33–45CrossRefGoogle Scholar
  74. Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Chang Biol 13:1737–1747CrossRefGoogle Scholar
  75. Felzer B, Reilly J, Melillo J, Kicklighter D, Sarofim M, Wang C, Prinn R, Zhuang Q (2005) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Clim Change 73:345–373CrossRefGoogle Scholar
  76. Feng Z, Jin M, Zhang F, Huang Y (2003) Effects of ground-level ozone (O3) pollution on the yields of rice and winter wheat in the Yangtze River delta. J Environ Sci 15:360–362Google Scholar
  77. Fiscus MD, Miller JE, Booker FL, Heagle AS, Reid CD (2002) The impact of ozone and other limitations on the crop productivity response to CO2. Technology 8:181–192Google Scholar
  78. Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant Cell Environ 28:997–1011CrossRefGoogle Scholar
  79. Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in ozone sensitivity. Environ Exp Bot 61:190–198CrossRefGoogle Scholar
  80. Forkel R, Knoche R (2006) Regional climate change and its impact on photooxidant concentrations in southern Germany: simulations with a coupled regional climate-chemistry model. J Geophys Res 111:D12302CrossRefGoogle Scholar
  81. Fowler D, Flechard C, Cape JN, Storeton-West RL, Coyle M (2001) Measurements of ozone deposition to vegetation quantifying the flux, the stomatal and non-stomatal components. Water, Air, and Soil Pollution 130:63–74CrossRefGoogle Scholar
  82. Fuhrer J (2000) Introduction to the special issue on ozone risk analysis for vegetation in Europe. Environ Pollut 109:359–360PubMedCrossRefGoogle Scholar
  83. Fuhrer J (2003) Elevated CO2, ozone, and global climate change: agroecosystem responses. Agric Ecosyst Environ 97:1–20CrossRefGoogle Scholar
  84. Fuhrer J, Booker F (2003) Ecological issues related to ozone: agricultural issues. Environ Int 29:141–154PubMedCrossRefGoogle Scholar
  85. Fuhrer J, Skärby L, Ashmore M (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 97:91–106PubMedCrossRefGoogle Scholar
  86. Fuhrer J (1997) Ozone sensitivity of managed pasture. In: Cheremisinoff PN (ed) Ecological advances and environmental impact assessment, advances in environmental control technology series. Gulf, Houston, pp 681–706Google Scholar
  87. Gauss M, Ellingsen K, Isaksen ISA, Dentener FJ, Stevenson DS, Amann M, Cofala J (2007) Changes in nitrogen dioxide and ozone over southeast and east Asia between year 2000 and 2030 with fixed meteorology Source. Terr Atmos Ocean Sci 18:475–492CrossRefGoogle Scholar
  88. Giorgi F, Meleux F (2007) Modelling the regional effects of climate change on air quality. Comptes Rendues Geoscience 339:721–733CrossRefGoogle Scholar
  89. Grantz DA, Zhang XJ, Massman WJ, Delany A, Pederson JR (1997) Ozone deposition to a cotton (Gossypium hirsutum L.) field: stomatal and surface wetness effects during the California ozone deposition experiment. Agric For Meteorol 85:19–31CrossRefGoogle Scholar
  90. Grantz DA, Gunn S, Vu HB (2006) O3 impacts on plant development: a meta-analysis of root/shoot allocation and growth. Plant Cell Environ 29:1193–1209PubMedCrossRefGoogle Scholar
  91. Grantz DA, Shrestha A, Vu H-B (2008) Early vigor and ozone response in horseweed (Conyza canadensis) biotypes differing in glyphosate resistance. Weed Sci 56:224–230CrossRefGoogle Scholar
  92. Grewe V (2007) Impact of climate variability on tropospheric ozone. Sci Total Environ 374:167–181PubMedCrossRefGoogle Scholar
  93. Grulke NE, Paoletti E, Heath RL (2007) Comparison of calculated and measured foliar O3 flux in crop and forest species. Environ Pollut 146:640–647PubMedCrossRefGoogle Scholar
  94. Hacour A, Craigon J, Vandermeiren K, Ojanperä K, Pleijel H, Danielsson H, Högy P, Finnan J, Bindi M (2002) CO2 and ozone effects on canopy development of potato crops across Europe. Eur J Agron 17:257–272CrossRefGoogle Scholar
  95. Harmens H, Mills G, Emberson LD, Ashmore MR (2007) Implications of climate change for the stomatal flux of ozone: a case study for winter wheat. Environ Pollut 146:763–770PubMedCrossRefGoogle Scholar
  96. Hassan IA (2006) Physiological and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O3 and antioxidant chemicals: possible roles of antioxidant enzymes. Ann Appl Biol 148:197–206CrossRefGoogle Scholar
  97. Hauglustaine DA, Lathière J, Szopa S, Folberth GA (2005) Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys Res Lett 32:L24807 doi: 10.1029/2005GL024031
  98. He YJ, Uno I, Wang ZF, Pochanart P, Li J, Akimoto H (2008) Significant impact of the East Asia monsoon on ozone seasonal behavior in the boundary layer of Eastern China and the west Pacific region. Atmos Chem Phys Discuss 8:14927–14955Google Scholar
  99. Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155:453–463Google Scholar
  100. Holopainen JK (2002) Aphid response to elevated ozone and CO2. Entomol Exp Appl 104:137–142CrossRefGoogle Scholar
  101. Hough AM, Derwent RG (1990) Changes in the global concentration of tropospheric ozone due to human activities. Nature 344:645–648CrossRefGoogle Scholar
  102. Huixiang W, Kiang CS, Xiaoyan T, Xiuji Z, Chameides WL (2005) Surface ozone: a likely threat to crops in Yangtze delta of China. Atmos Environ 39:3843–3850CrossRefGoogle Scholar
  103. ICP Vegetation (2007) International Cooperative Programme on Effects of Air Pollution on natural vegetation and crops, Annual Report 2006/2007 (http://icpvegetation.ceh.ac.uk/, last accessed Oct 2008)
  104. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  105. Islam KR, Mulchi CL, Ali AA (1999) Tropospheric carbon dioxide or ozone enrichments and moisture effects on soil organic carbon quality. J Environ Qual 28:1629–1636Google Scholar
  106. Jaffe D, Ray J (2007) Increase in surface ozone at rural sites in the western US (2007). Atmos Environ 41:5452–5463CrossRefGoogle Scholar
  107. Jäggi M, Fuhrer J (2007) Oxygen and carbon isotopic signatures reveal a long-term effect of free-air ozone enrichment on leaf conductance in semi-natural grassland. Atmos Environ 41:8811–8817CrossRefGoogle Scholar
  108. Jäggi M, Ammann C, Neftel A, Fuhrer J (2006) Environmental control of ozone concentration profiles in a grassland canopy. Atmos Environ 40:5496–5507CrossRefGoogle Scholar
  109. Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans R Soc 273:593–610CrossRefGoogle Scholar
  110. Jaudé MB, Katerij N, Mastrorilli M, Rana G (2008) Analysis of the effect of ozone on soybean in the Mediterranean region. I. The consequences on crop-water status. Eur J Agron 28:508–518CrossRefGoogle Scholar
  111. Jenkin ME (2008) Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos Environ 42:5434–5445CrossRefGoogle Scholar
  112. Jones MB, Donnelly A (2004) Carbon sequestration in temperate grassland ecosystems and the influence of management, climate and elevated CO2. New Phytol 164:423–439CrossRefGoogle Scholar
  113. Jonson JE, Simpson D, Fagerli H, Solberg S (2006) Can we explain the trends in European ozone levels. Atmos Chem Phys 6:51–66Google Scholar
  114. Kanerva T, Palojärvi A, Rämö K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510CrossRefGoogle Scholar
  115. Karlsson PE, Tang L, Sundberg J, Chen D, Lindskog A, Pleijel H (2007) Increasing risk for negative ozone impacts on vegetation in northern Sweden. Environ Pollut 150:96–106PubMedCrossRefGoogle Scholar
  116. Keller F, Bassin S, Ammann C, Fuhrer J (2007) High-resolution modelling of AOT40 and stomatal ozone uptake in wheat and grassland: a comparison between 2000 and the hot summer of 2003 in Switzerland. Environ Pollut 146:671–677PubMedCrossRefGoogle Scholar
  117. Keutgen AJ, Pawelzik E (2008) Apoplastic antioxidative system responses to ozone stress in strawberry leaves. J Plant Physiol 165:868–875PubMedCrossRefGoogle Scholar
  118. Kim JS, Chappelka AH, Miller-Goodman MS (1998) Decomposition of blackberry and broomsedge bluestem as influenced by ozone. J Environ Qual 27:953–960Google Scholar
  119. Klepper B, Rickman RW, Waldman S, Chevalier P (1998) The physiological life cycle of wheat: its use in breeding and crop management. Euphytica 100:341–347CrossRefGoogle Scholar
  120. Kölliker R, Bassin S, Schneider D, Widmer F, Fuhrer J (2008) Elevated ozone affects the genetic composition of Plantago lanceolata L. populations. Environ Pollut 152:380–386PubMedCrossRefGoogle Scholar
  121. Kunkel KE, Huang H-C, Liang X-Z, Lin J-T, Wuebbles D, Tao Z, Williams A, Caughey M, Zhu J, Hayhoe K (2008) Sensitivity of future ozone concentrations in the northeast USA to regional climate change. Mitig Adapt Strategies Glob Chang 13:597–606CrossRefGoogle Scholar
  122. Lelieveld J, Dentener FJ (2000) What controls tropospheric ozone. J Geophys Res 105(D3):3531–3551CrossRefGoogle Scholar
  123. Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355CrossRefGoogle Scholar
  124. Lefohn AS, Oltmans SJ, Dann T, Singh HB (2001) Present-day variability of background ozone in the lower troposphere. J Geophys Res 106:9945–9958CrossRefGoogle Scholar
  125. Loya WM, Pregitzer KS, Karberg NJ, King JS, Giardina CP (2003) Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707PubMedCrossRefGoogle Scholar
  126. Luo Y, Zhou X (2006) Soil respiration and the environment. Academic/Elsevier, San DiegoGoogle Scholar
  127. Lüscher A, Fuhrer J, Newton PCD (2005) Global atmospheric change and its effect on managed grassland systems. In: McGilloway DC (ed) Grassland—a global resource. Wageningen Academic, NL, pp 251–264Google Scholar
  128. Maherali H, Johnson HB, Jackson RB (2003) Stomatal sensitivity to vapour pressure difference over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 26:1297–1306CrossRefGoogle Scholar
  129. Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D (2008) The challenge of making ozone risk assessment more mechanistic for forest trees. Environ Pollut 156:567–582Google Scholar
  130. Mauzerall DL, Wang X (2001) Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237–268CrossRefGoogle Scholar
  131. McKee IF, Long SP (2001) Plant growth regulators control ozone damage to wheat yield. New Phytol 152:41–51CrossRefGoogle Scholar
  132. Meleux F, Solmon F, Giorgi F (2007) Increase in summer European ozone amounts due to climate change. Atmos Environ 41:7577–7587CrossRefGoogle Scholar
  133. Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643CrossRefGoogle Scholar
  134. Mittal ML, Hess PG, Jain SL, Arya BC, Sharma C (2007) Surface ozone in the Indian region. Atmos Environ 41:6572–6584CrossRefGoogle Scholar
  135. Moldau H, Bichele I (2002) Plasmalemma protection by the apoplast as assessed from above-zero ozone concentrations in leaf intercellular air spaces. Planta 214:484–487PubMedCrossRefGoogle Scholar
  136. Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328CrossRefGoogle Scholar
  137. Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357PubMedCrossRefGoogle Scholar
  138. Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean. New Phytol 170:333–343PubMedCrossRefGoogle Scholar
  139. Muntifering RB, Manning WJ, Lin JC, Robinson GB (2006) Short-term exposure to ozone altered the relative feed value of an alfalfa cultivar. Environ Pollut 140:1–3PubMedCrossRefGoogle Scholar
  140. Musselman RC, McCool PM, Lefohn AS (1994) Ozone descriptors for an air quality standard to protect vegetation. J Air Waste Manage Assoc 44:1383–1390Google Scholar
  141. Musselman RC, Lefohn AS, Massman WJ, Heath RL (2006) A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmos Environ 40:1869–1888CrossRefGoogle Scholar
  142. Nakicenovic N, Swart R (eds) (2000) Special report on emission scenarios. Intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  143. Nijs I, Ferris R, Blum H, Hendrey G, Impens I (1997) Stomatal regulation in a changing climate: a field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE). Plant Cell Environ 20:1041–1050CrossRefGoogle Scholar
  144. Nussbaum S, Geissmann M, Fuhrer J (1995) Ozone-exposure-response relationships for mixtures of perennial ryegrass and white clover depend on ozone exposure patterns. Atmos Environ 29:989–995CrossRefGoogle Scholar
  145. Nussbaum S, Remund J, Rihm B, Mieglitz K, Gurtz J, Fuhrer J (2003) High-resolution spatial analysis of stomatal ozone uptake in arable crops and pastures. Environ Int 29:385–392PubMedCrossRefGoogle Scholar
  146. Oltmans SJ, Lefohn AS, Harris JM, Galbally I, Scheele HE, Bodeker G, Brunke E, Claude H, Tarasick D, Johnson BJ, Simmonds P, Shadwick D, Anlauf K, Hayden K, Schmidlin F, Fujimoto T, Akagi K, Meyer C, Nichol S, Davies J, Redondas A, Cuevas E (2006) Long-term changes in tropospheric ozone. Atmos Environ 40:3156–3173CrossRefGoogle Scholar
  147. Ordóñez C, Mathis H, Furger M, Henne S, Hüglin C, Staehelin J, Prévôt ASH (2005) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmos Chem Phys 5:1187–1203Google Scholar
  148. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Schäfer KVR (1999) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ 22:1515–1526CrossRefGoogle Scholar
  149. Paoletti E, Manning WJ (2007) Toward a biologically significant and usable standard for ozone that will also protect plants. Environ Pollut 150:85–95PubMedCrossRefGoogle Scholar
  150. Parrish DD, Millet DB, Goldstein AH (2008) Increasing ozone concentrations in marine boundary layer air inflow at the west coasts of North America and Europe. Atmos Chem Phys Discuss 8:13847–13901Google Scholar
  151. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob Environ Change 14:53–67CrossRefGoogle Scholar
  152. Philipona R, Du B, Marty C, Ohmura A, Wild M (2004) Radiative forcing—measured at Earth’s surface—corroborate the increasing greenhouse effect. Geophys Res Lett 31:L03202CrossRefGoogle Scholar
  153. Philipona R, Dürr B, Ohmura A, Ruckstuhl C (2005) Anthropogenic greenhouse forcing and strong water vapor feedback increase temperature in Europe. Geophys Res Lett 32:L19809CrossRefGoogle Scholar
  154. Piikki K, De Temmerman L, Ojanperä K Danielsson H, Pleijel H (2008) The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure. Eur J Agron 28:245–254CrossRefGoogle Scholar
  155. Pleijel H, Danielsson H, Gelang, Sild E, Selldén G (1998) Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agric Ecosyst Environ 70:61–68CrossRefGoogle Scholar
  156. Pleijel H, Mortensen L, Fuhrer J, Ojanperä K, Danielsson H (1999) Grain protein accumulation in relation to grain yield of spring wheat (Triticum aestivum L.) grown in open-top chambers with different concentrations of ozone, carbon dioxide and water availability. Agric Ecosyst Environ 72:265–270CrossRefGoogle Scholar
  157. Pleijel H, Eriksen AB, Danielsson H, Bondesson N, Selldén G (2006) Differential ozone sensitivity in an old and modern Swedish wheat cultivar—grain yield and quality, leaf chlorophyll and stomatal conductance. Environ Exp Bot 56:63–71CrossRefGoogle Scholar
  158. Pleijel H, Danielsson H, Emberson L, Ashmore MR, Mills G (2007) Ozone risk assessment for agricultural crops in Europe: further development of stomatal flux and flux-response relationships for European wheat and potato. Atmos Environ 41:3022–3040CrossRefGoogle Scholar
  159. Plöchl M, Lyons T, Ollerenshaw J, Barnes J (2000) Simulating ozone detoxification in the leaf apoplast through the direct reaction with ascorbate. Planta 210:454–467PubMedCrossRefGoogle Scholar
  160. Prather M, Gauss M, Berntsen T, Isaksen I, Sundet J, Bey I, Brasseur G, Dentener F, Derwent R, Stevenson D, Grenfell L, Hauglustaine D, Horowitz L, Jacob D, Mickley L, Lawrence M, von Kuhlmann R, Muller J-F, Pitari G, Rogers H, Johnson M, Pyle J, Law K, van Weele M, Wild O (2003) Fresh air in the 21st century. Geophys Res Lett 30:1100 doi: 10.1029/2002GL016285 CrossRefGoogle Scholar
  161. Pritchard J, Griffiths B, Hunt EJ (2007) Can the plant-mediated impacts on aphids of elevated CO2 and drought be predicted. Glob Chang Biol 13:1616–1629CrossRefGoogle Scholar
  162. Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721CrossRefGoogle Scholar
  163. Racherla PN, Adams PJ (2008) The response of surface ozone to climate change over the Eastern United States. Atmos Chem and Phys 8:871–885CrossRefGoogle Scholar
  164. Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554CrossRefGoogle Scholar
  165. Reid CD, Fiscus EL (2008) Ozone and density affect the response of biomass and see yield to elevated CO2 in rice. Glob Chang Biol 14:60–76Google Scholar
  166. Reilly J, Paltsev S, Felzer B, Wang X, Kicklighter D, Melillo J, Prinn R, Sarofim M, Sokolov A, Wang C (2007) Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone. Energy Policy 35:5370–5383CrossRefGoogle Scholar
  167. Ren W, Tian H, Chen G, Liu M, Zhang C, Chappelka AH, Pan S (2007a) Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China’s grassland ecosystems from 1961-2000. Environ Pollut 149:327–335PubMedCrossRefGoogle Scholar
  168. Ren W, Tian H, Liu M, Zhang C, Chen G, Pan S, Felzer B, Xu X (2007b) Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. J Geophys Res D: Atmospheres 112:D22S09CrossRefGoogle Scholar
  169. Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259CrossRefGoogle Scholar
  170. Reynolds MP, Saint Pierre C, Saad ASI, Vargas M, Condon AG (2007) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47:S172–S189CrossRefGoogle Scholar
  171. Rinnan R, Holopainen T (2004) Ozone effects on the ultrastructure of peatland plants: sphagnum mosses, Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum. Ann Bot 94:623–634PubMedCrossRefGoogle Scholar
  172. Sandermann H (2008) Ecotoxicology of ozone: bioactivation of extracellular ascorbate. Biochem Biophys Res Commun 366:271–274PubMedCrossRefGoogle Scholar
  173. Sanderson MG, Collins WJ, Hemming DL, Betts RA (2007) Stomatal conductance changes du to increasing carbon dioxide levels: projected impact on surface ozone levels. Tellus 59B:404–411Google Scholar
  174. Sanderson MG, Jones CD, Collins WJ, Johnson CE, Derwent RG (2003) Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett 30:1936 doi: 10.1029/2003GL017642
  175. Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928PubMedGoogle Scholar
  176. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336PubMedCrossRefGoogle Scholar
  177. Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708PubMedCrossRefGoogle Scholar
  178. Schroeder JB, Gray ME, Ratcliffe ST, Estes RE, Long SP (2006) Effects of elevated CO2 and O3 on a variant of the western corn rootworm (Coleoptera: Chrysomelidae). Environ Entomol 35:637–644CrossRefGoogle Scholar
  179. Schwanz P, Polle A (2001) Growth under elevated CO2 ameliorates defenses against photo-oxidative stress in poplar (Populus alba x tremula). Environ Exp Bot, pp 43–53Google Scholar
  180. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209PubMedCrossRefGoogle Scholar
  181. Shrestha A, Grantz DA (2005) Ozone impacts on competition between tomato and yellow nutsedge: above- and below-ground effects. Crop Sci 45:1587–1595CrossRefGoogle Scholar
  182. Simmonds PG, Derwent RG, Manning AL, Spain G (2004) Significant growth in surface ozone at Mace Head, Ireland, 1987–2003. Atmos Environ 38:4769–4778CrossRefGoogle Scholar
  183. Sinclair T, Fiscus E, Wherley B, Durham M, Rufty T (2007) Atmospheric vapor pressure deficit is critical in predicting growth response of “cool-season” grass Festuca arundinacea to temperature change. Planta 227:273–276PubMedCrossRefGoogle Scholar
  184. Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794PubMedCrossRefGoogle Scholar
  185. Smith P, Fang C, Dawson JJC, Moncrieff JB (2008) Impact of global warming on soil organic carbon. Adv Agron 97:1–43CrossRefGoogle Scholar
  186. Soja G, Barnes JD, Posch M, Vandermeiren K, Pleijel H, Mills G (2000) Phenological weighting of ozone exposures in the calculation of critical levels for wheat, bean and plantain. Environ Pollut 109:517–524PubMedCrossRefGoogle Scholar
  187. Staehelin J (2001) Ozone measurements and trends (troposphere), in Encyclopedia of physical science and technology, vol 11, 3rd edn. Academic, New york pp 539–561Google Scholar
  188. Stevenson DS, Dentener FJ, Schultz MG, Ellingsen K, van Noije TPC, Wild O, Zeng G, Amann M, Atherton CS, Bell N, Bergmann DJ, Bey I, Butler T, Cofala J, Collins WJ, Derwent RG, Doherty RM, Drevet J, Eskes HJ, Fiore AM, Gauss M, Hauglustaine DA, Horowitz LW, Isaksen ISA, Krol MC, Lamarque JF, Lawrence MG, Montanaro V, Muller JF, Pitari G, Prather MJ, Pyle JA, Rast S, Rodriguez JM, Sanderson MG, Savage NH, Shindell DT, Strahan SE, Sudo K, Szopa S (2006) Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res—Atmosphere 111(D8):D08301CrossRefGoogle Scholar
  189. Stevenson D, Doherty R, Sanderson M, Johnson C, Collins B, Derwent D (2005) Impacts of climate change and variability on tropospheric ozone and its precursors. Faraday Discuss 130:1–17CrossRefGoogle Scholar
  190. Szilagyi J, Katul GG, Parlange MB (2001) Evapotranspiration intensifies over the conterminous United States. J Water Resour Plann Manage 127:354–362CrossRefGoogle Scholar
  191. Szopa S, Hauglustaine DA (2007) Relative impacts of worldwide tropospheric ozone changes and regional emission modifications on European surface-ozone levels. Comptes Rendues Geoscience 339:709–720CrossRefGoogle Scholar
  192. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev, Genet 9:444–457CrossRefGoogle Scholar
  193. Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531PubMedCrossRefGoogle Scholar
  194. Thwaites RH, Ashmore MR, Morton AJ, Pakeman RJ (2006) The effects of tropospheric ozone on the species dynamics of calcareous grassland. Environ Pollut 144:500–509PubMedCrossRefGoogle Scholar
  195. Tingey DT, Rodecap KD, Lee EH, Hogsett WE, Gregg JW (2002) Pod development increases the ozone sensitivity of Phaseolus vulgaris. Water Air Soil Pollut 139:325–341CrossRefGoogle Scholar
  196. Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582PubMedCrossRefGoogle Scholar
  197. Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci U S A 104:19686–19690PubMedCrossRefGoogle Scholar
  198. UNECE (2004) UNECE Convention on Long-Range Transboundary Air Pollution. Manual on methodologies and criteria on mapping critical levels and loads and air pollution effects, risks and trends (http://icpmapping.org/cms/zeigeBereich/11/manual_english.html, last accessed Oct 2008)
  199. USEPA (2006) U.S. EPA. Air quality criteria for ozone and related photochemical oxidants (Final). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-05/004aF-cFGoogle Scholar
  200. Vandermeiren K, Black C, Pleijel H, De Temmerman L (2005) Impact of rising tropospheric ozone on potato: effects on photosynthesis, growth, productivity and yield quality. Plant Cell Environ 28:982–996CrossRefGoogle Scholar
  201. Van Tienhoven AM, Zunckel M, Emberson L, Koosailee A, Otter L (2006) Preliminary assessment of risk of ozone impacts to maize (Zea mays) in southern Africa. Environ Pollut 140:220–230PubMedCrossRefGoogle Scholar
  202. Vautard R, Hauglustaine D (2007) Impact of global climate change on regional air quality: introduction to the thematic issue. Comptes Rendues Geoscience 339:703–708CrossRefGoogle Scholar
  203. Vautard R, Beekmann M, Desplat J, Hodzic A, Morel S (2007) Air quality in Europe during the summer of 2003 as a prototype of air quality in a warmer climate. Comptes Rendues Geoscience 339:747–763CrossRefGoogle Scholar
  204. Vingarzan R (2004) A review of surface ozone background levels and trends. Atmos Environ 38:3431–3442CrossRefGoogle Scholar
  205. Volk M, Geissmann M, Blatter A, Contat F, Fuhrer J (2003) Design and performance of a free-air exposure system to study long-term effects of ozone on grasslands. Atmos Environ 37:1341–1350CrossRefGoogle Scholar
  206. Volk M, Bungener P, Montani M, Contat F, Fuhrer J (2006) Grassland yield declined by a quarter in five years of free-air ozone fumigation. Glob Chang Biol 12:74–83CrossRefGoogle Scholar
  207. Vorne V, Ojanperä K, De Temmerman L, Bindi M, Högy P, Jones MB, Lawson T, Persson K (2002) Effects of elevated carbon dioxide and ozone on potato tuber quality in the European multiple-site experiment 'CHIP-project’. Eur J Agron 17:369–381CrossRefGoogle Scholar
  208. Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ 371:304–313PubMedCrossRefGoogle Scholar
  209. Wang X, Mauzerall DL (2004) Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmos Environ 38:4383–4402CrossRefGoogle Scholar
  210. Wang X, Manning W, Feng Z, Zhu Y (2007a) Ground-level ozone in China: distribution and effects on crop yields. Environ Pollut 147:394–400PubMedCrossRefGoogle Scholar
  211. Wang X, Zheng Q, Yao F, Chen Z, Feng Z, Manning WJ (2007b) Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU). Environ Pollut 148:390–395PubMedCrossRefGoogle Scholar
  212. Wang X, Zheng Q, Feng Z, Xie J, Feng Z, Ouyang Z, Manning WJ (2008) Comparison of a diurnal vs steady-state ozone exposure profile on growth and yield of oilseed rape (Brassica napus L.) in open-top chambers in the Yangtze Delta, China. Environ Pollut, in pressGoogle Scholar
  213. Wieser G, Matyssek R (2007) Linking ozone uptake and defense towards a mechanistic risk assessment for forest trees. New Phytol 174:7–9PubMedCrossRefGoogle Scholar
  214. Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–713PubMedCrossRefGoogle Scholar
  215. Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30:1150–1162PubMedCrossRefGoogle Scholar
  216. Xu X, Lin W, Wang T, Yan P, Tang J, Meng Z, Wang Y (2008) Long-term trend of surface ozone at a regional background station in eastern China 1991–2006: enhanced variability. Atmos Chem Phys Discuss 8:215–243CrossRefGoogle Scholar
  217. Yu G-R, Zhuang J, Yu Z-L (2001) An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field. J Plant Physiol 158:861–874CrossRefGoogle Scholar
  218. Zeng G, Pyle JA, Young PJ (2008) Impact of climate change on tropospheric ozone and its global budgets. Atmos Chem Phys 8:369–387Google Scholar
  219. Zhang L, Vet R, Brook JR, Legge AH (2006) Factors affecting stomatal uptake of ozone by different canopies and a comparison between dose and exposure. Sci Total Environ 370:117–132PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Air Pollution/Climate GroupAgroscope Research Station ARTZurichSwitzerland

Personalised recommendations