, Volume 95, Issue 11, pp 1027–1032 | Cite as

Palaeoenvironmental controls on the distribution of Cretaceous herbivorous dinosaurs

  • Richard J. ButlerEmail author
  • Paul M. Barrett
Original Paper


Previous attempts to determine palaeoenvironmental preferences in dinosaurs have generally been qualitative assessments based upon data from restricted geographical areas. Here, we use a global database of Cretaceous herbivorous dinosaurs to identify significant associations between clades and broad palaeoenvironmental categories (‘terrestrial’, ‘coastal’, ‘marine’). Nodosaurid ankylosaurs and hadrosaurids show significant positive associations with marine sediments, while marginocephalians (Ceratopsia, Pachycephalosauria), saurischians (herbivorous theropods, Sauropoda) and ankylosaurid ankylosaurs are significantly positively associated with terrestrial sediments. These results provide quantitative support for the hypothesis that some clades (Nodosauridae, Hadrosauridae) were more abundant in coastal and/or fluvial environments, while others (e.g. Marginocephalia, Ankylosauridae) preferentially inhabited more distal environments.


Cretaceous Dinosauria Palaeoecology Palaeoenvironments 



This research was funded by the award of a NERC Standard Grant (NE/C002865/1) to P.M.B, Paul Kenrick and Malcolm Penn (NHM). Thanks to Alistair McGowan for discussion and to Oliver Rauhut and two anonymous reviewers for helpful comments which improved the final version.

Supplementary material

114_2008_417_MOESM1_ESM.xls (719 kb)
ESM 1(XLS 719 KB)


  1. Barrett PM (2005) The diets of ostrich dinosaurs (Theropoda: Ornithomimosauria). Palaeontology 48:347–358 doi: 10.1111/j.1475-4983.2005.00448.x CrossRefGoogle Scholar
  2. Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (1992) Terrestrial ecosystems through time. University of Chicago Press, ChicagoGoogle Scholar
  3. Brinkman DB, Ryan MJ, Eberth DA (1998) The paleogeographic and stratigraphic distribution of ceratopsids (Ornithischia) in the Upper Judith River Group of Western Canada. Palaios 13:160–169CrossRefGoogle Scholar
  4. Carpenter K (2001) Phylogenetic analysis of the Ankylosauria. In: Carpenter K (ed) The Armored Dinosaurs. Indiana University Press, Bloomington, pp 455–483Google Scholar
  5. Carpenter K, Dilkes D, Weishampel DB (1995) The dinosaurs of the Niobrara Chalk Formation (Upper Cretaceous, Kansas). J Vert Paleont 15:275–297Google Scholar
  6. Coombs WP (1995) A new nodosaurid ankylosaur (Dinosauria: Ornithischia) from the Lower Cretaceous of Texas. J Vert Paleont 15:298–312Google Scholar
  7. Coombs WP, Deméré TA (1996) A Late Cretaceous nodosaurid ankylosaur (Dinosauria: Ornithischia) from marine sediments of coastal California. J Paleont 70:311–326Google Scholar
  8. Dodson P (1971) Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur Provincial Park, Alberta (Canada). Palaeogeogr Palaeoclimatol Palaeoecol 10:21–74 doi: 10.1016/0031-0182(71)90044-7 CrossRefGoogle Scholar
  9. Ford TL, Kirkland JI (2001) Carlsbad ankylosaur (Ornithischia, Ankylosauria): an ankylosaurid and not a nodosaurid. In: Carpenter K (ed) The armored dinosaurs. Indiana University Press, Bloomington, pp 239–260Google Scholar
  10. Gasparini Z, Pereda-Suberbiola X, Molnar RE (1996) New data on the ankylosaurian dinosaur from the Late Cretaceous of the Antarctic Peninsula. Mem Queensland Mus 39:583–594Google Scholar
  11. Horner JA (1979) Upper Cretaceous dinosaurs from the Bearpaw Shale (marine) of south–central Montana, with a checklist of Upper Cretaceous remains from marine sediments in North America. J Paleont 53:566–577Google Scholar
  12. Horner JR, Weishampel DB, Forster CA (2004) Hadrosauridae. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. 2nd edn. University of California Press, Berkeley, pp 438–463Google Scholar
  13. Hunt AP, Lockley MG, Lucas SG, Meyer CA (1994) The global sauropod fossil record. Gaia 10:261–279Google Scholar
  14. Jablonski D, Erwin DH, Lipps JH (1996) Evolutionary paleobiology. University of Chicago Press, ChicagoGoogle Scholar
  15. Kirkland JI (1998) A polacanthine ankylosaur (Ornithischia: Dinosauria) from the Early Cretaceous of eastern Utah. In: Lucas SG, Kirkland JI, Estep JW (eds) Lower and Middle Cretaceous ecosystems. New Mexico Museum of Natural History and Science, Albuquerque, pp 271–281Google Scholar
  16. Lehman TM (1987) Late Maastrichtian paleoenvironments and dinosaur biogeography in the Western Interior of North America. Palaeogeogr Palaeoclimatol Palaeoecol 60:189–217 doi: 10.1016/0031-0182(87)90032-0 CrossRefGoogle Scholar
  17. Lockley MG, Meyer CA, Hunt AP, Lucas SG (1994) The distribution of sauropod tracks and trackmakers. Gaia 10:233–248Google Scholar
  18. Maryańska T, Chapman RE, Weishampel DB (2004) Pachycephalosauria. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. 2nd edn. University of California Press, Berkeley, pp 464–477Google Scholar
  19. Mehl MG (1936) Hierosaurus coleii: a new aquatic dinosaur from the Niobrara Cretaceous of Kansas. J Sci Lab Denison Univ 31:1–20Google Scholar
  20. Molnar RE (1980) An ankylosaur (Ornithischia: Reptilia) from the Lower Cretaceous of southern Queensland. Mem Queensland Mus 20:77–87Google Scholar
  21. Molnar RE (1996) Preliminary report on a new ankylosaur from the Early Cretaceous of Queensland, Australia. Mem Queensland Mus 39:653–668Google Scholar
  22. Olsen PE, Rainforth EC (2003) The Early Jurassic dinosaurian ichnogenus Anomoepus. In: LeTourneau PM, Olsen PE (eds) The Great Rift Valleys of Pangea in Eastern North America. Volume 2, sedimentology, stratigraphy and paleontology. Columbia University Press, New York, pp 314–368Google Scholar
  23. Parish J (2005) The evolution and palaeobiology of the armoured dinosaurs (Dinosauria: Ankylosauria). Unpublished Ph.D. thesis, Oxford UniversityGoogle Scholar
  24. Peters SE (2005) Geologic constraints on the macroevolutionary history of marine animals. Proc Natl Acad Sci USA 102:12326–12331 doi: 10.1073/pnas.0502616102 PubMedCrossRefGoogle Scholar
  25. Salgado L, Gasparini Z (2006) Reappraisal of an ankylosaurian dinosaur from the Upper Cretaceous of James Ross Island (Antarctica). Geodiversitas 28:119–135Google Scholar
  26. Smith AB (2001) Large-scale heterogeneity of the fossil record: implications for Phanerozoic diversity studies. Philos Trans R Soc Lond, B 356:351–367 doi: 10.1098/rstb.2000.0768 CrossRefGoogle Scholar
  27. Smith AB (2007) Intrinsic versus extrinsic biases in the fossil record: contrasting the fossil record of echinoids in the Triassic and Early Jurassic using sampling data, phylogenetic analyses, and molecular clocks. Paleobiology 33:310–323 doi: 10.1666/06073.1 CrossRefGoogle Scholar
  28. Vickaryous MK, Maryańska T, Weishampel DB (2004) Ankylosauria. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. 2nd edn. University of California Press, Berkeley, pp 363–392Google Scholar
  29. Waite S (2000) Statistical ecology in practice: a guide to analysing environmental and ecological field data. Pearson Education Limited, HarlowGoogle Scholar
  30. Weishampel DB, Norman DB (1989) Vertebrate herbivory in the Mesozoic; jaws, plants and evolutionary metrics. Spec Pap Geol Soc America 238:87–100Google Scholar
  31. Weishampel DB, Dodson P, Osmólska H (2004a) The Dinosauria, 2nd edn. University of California Press, BerkeleyGoogle Scholar
  32. Weishampel DB, Barrett PM, Coria RA, Le Loeuff J, Xu X, Zhao X, Sahni A, Gomani EMP, Noto CR (2004b) Dinosaur distribution. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria. 2nd edn. University of California Press, Berkeley, pp 517–606Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of PalaeontologyThe Natural History MuseumLondonUK

Personalised recommendations