Naturwissenschaften

, Volume 95, Issue 9, pp 877–884 | Cite as

The structure of gallery networks in the nests of termite Cubitermes spp. revealed by X-ray tomography

  • Andrea Perna
  • Christian Jost
  • Etienne Couturier
  • Sergi Valverde
  • Stéphane Douady
  • Guy Theraulaz
Short Communication

Abstract

Recent studies have introduced computer tomography (CT) as a tool for the visualisation and characterisation of insect architectures. Here, we use CT to map the three-dimensional networks of galleries inside Cubitermes nests in order to analyse them with tools from graph theory. The structure of these networks indicates that connections inside the nest are rearranged during the whole nest life. The functional analysis reveals that the final network topology represents an excellent compromise between efficient connectivity inside the nest and defence against attacking predators. We further discuss and illustrate the usefulness of CT to disentangle environmental and specific influences on nest architecture.

Keywords

Cubitermes nests Computer tomography Networks Social insects Animal architectures Termite mounds 

Supplementary material

114_2008_388_MOESM1_ESM.pdf (153 kb)
(PDF 152 kb)
114_2008_388_Fig1_ESM.tif (1.4 mb)
Supplementary Fig. 1 (TIFF 1.4 mb)
114_2008_388_Fig2_ESM.tif (575 kb)
Supplementary Fig. 2 (TIFF 575 kb)

References

  1. Albert R, Barabasi A (2002) Statistical mechanics of complex networks. Rev Mod Phys 74(47):47–97CrossRefGoogle Scholar
  2. Albert R, Jeong H, Barabasi A (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382PubMedCrossRefGoogle Scholar
  3. Buhl J, Gautrais J, Solé R, Kuntz P, Valverde S, Deneubourg JL, Theraulaz G (2004) Efficiency and robustness in ant networks of galleries. Eur Phys J B 42(1):123–129CrossRefGoogle Scholar
  4. Buhl J, Gautrais J, Deneubourg JL, Kuntz P, Theraulaz G (2006a) The growth and form of tunnelling networks in ants. J Theor Biol 243(3):287–298PubMedCrossRefGoogle Scholar
  5. Buhl J, Gautrais J, Reeves N, Solé R, Valverde S, Kuntz P, Theraulaz G (2006b). Topological patterns in street networks of self-organized urban settlements. Eur Phys J B 49(4):513–522.CrossRefGoogle Scholar
  6. Dejean A, Fénéron R (1999) Predatory behaviour in the ponerine ant, Centromyrmex bequaerti: a case of termitolesty. Behav Processes 47:125–133CrossRefGoogle Scholar
  7. Dejean A, Ruelle JE (1995) Importance of Cubitermes termitaries as helter for alien incipient termite societies. Insectes Soc 42:129–136CrossRefGoogle Scholar
  8. Dejean A, Bolton B, Durand J (1997) Cubitermes subarquatus termitaries as shelters for soil fauna in african rainforests. J Nat Hist 31(8):1289–1302CrossRefGoogle Scholar
  9. Dejean A, Durand J, Bolton B (1996) Ants inhabiting Cubitermes termitaries in african rain forests. Biotropica 28(4):701–713CrossRefGoogle Scholar
  10. Desneux J (1956) Structures “atypiques” dans les nidifications souterraines d’Apicotermes lamani SJ. (Isoptera, termitidae), mises en évidence par la radiographie. Insectes Soc 3(2):277–281CrossRefGoogle Scholar
  11. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271CrossRefGoogle Scholar
  12. Franks NR, Tofts C (1994) Foraging for work: how tasks allocate workers. Anim Behav 48:470–472CrossRefGoogle Scholar
  13. Fuchs A, Schreyer A, Feuerbach S, Korb J (2004) A new technique for termite monitoring using computer tomography and endoscopy. Int J Pest Manag 50(1):63–66CrossRefGoogle Scholar
  14. Gastner MT, Newman MEJ (2006) Optimal design of spatial distribution networks. Phys Rev E 74:016117CrossRefGoogle Scholar
  15. Grassé PP (1984) Termitologia, tome 2: fondation des sociétés, construction. Masson, ParisGoogle Scholar
  16. Halley JD, Burd M, Wells P (2005) Excavation and architecture of Argentine ant nests. Insectes Soc 52:350–356CrossRefGoogle Scholar
  17. Hervier B, Josens G, Deligne J, Terwinghe E, Verbanck J (2001) Etude des structures internes des nids de termites par analyse d’image. Actes Colloq Insectes Soc 14:45–49Google Scholar
  18. Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370CrossRefGoogle Scholar
  19. Iniesto P, Deligne J, Josens G, Verbanck J (2001) Morphologie fonctionnelle des nids de Noditermes aburiensis (insecta isoptera). Actes Colloq Insectes Soc 14:39–43Google Scholar
  20. Korb J (2003) Thermoregulation and ventilation of termite mounds. Naturwissenschaften 90(5):212–219PubMedGoogle Scholar
  21. Korb J, Linsenmair K (1999) The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav Ecol 10(3):312–316CrossRefGoogle Scholar
  22. Korb J, Linsenmair K (2000) Ventilation of termite mounds: new results require a new model. Behav Ecol 11(5):486–494CrossRefGoogle Scholar
  23. Lang C, Ohser J, Hilfer R (2001) On the analysis of spatial binary images. J Microsc 203:303–313PubMedCrossRefGoogle Scholar
  24. Lüscher M (1955) Der Sauerstoffverbrauch bei Termiten und die Ventilation des Nestes bei Macrotermes natalensis (haviland). Acta Trop 12:289–307PubMedGoogle Scholar
  25. Mikheyev A, Tschinkel W (2004) Nest architecture of the ant Formica pallidefulva: structure, costs and rules of excavation. Insectes Soc 51(1):30–36CrossRefGoogle Scholar
  26. Noirot C, Noirot-Timothée C (1962) Construction et reconstruction du nid chez. Cubitermes fungifaber. Symp Genet Biol Ital 11:180–188Google Scholar
  27. Pie M, Rosengaus R, Traniello J (2004) Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. J Theor Biol 226(1):45–51PubMedCrossRefGoogle Scholar
  28. Porta S, Crucitti P, Latora V (2006) The network analysis of urban streets: a dual approach. Physica A 369:853–866.CrossRefGoogle Scholar
  29. R Development Core Team (2006). R: a language and environment for statistical computing. R foundation for statistical computing, Vienna (ISBN 3-900051-07-0)Google Scholar
  30. Strahler AN (1952) Dynamic basis of geomorphology. Geol Soc Am Bull 63:923–938CrossRefGoogle Scholar
  31. Traniello FAJ, Rosengaus BR (1997) Ecology, evolution and division of labour in social insects. Anim Behav 53:209–213CrossRefGoogle Scholar
  32. Tschinkel W (1998) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: worker characteristics in relation to colony size and season. Insectes Soc 45(4):385–410CrossRefGoogle Scholar
  33. Tschinkel W (1999a) Sociometry and sociogenesis of colonies of the harvester ant, Pogonomyrmex badius: distribution of workers, brood and seeds within the nest in relation to colony size and season. Ecol Entomol 24(2):222–237CrossRefGoogle Scholar
  34. Tschinkel W (1999b) Sociometry and sociogenesis of colony-level attributes of the florida harvester ant (hymenoptera: Formicidae). Ann Entomol Soc Am 92(1):80–89Google Scholar
  35. Tschinkel W (2004) The nest architecture of the florida harvester ant, Pogonomyrmex badius. J Insect Sci 4:1–19Google Scholar
  36. Turner JS (2000) Extended organism: the physiology of animal-built structures. Harvard University Press, CambridgeGoogle Scholar
  37. Williams DF, Lofgren CS (1988) Nest casting of some ground-dwelling Florida ant species using dental labstone. In: Trage JC (ed) Advances in myrmecology. Brill, Leiden, pp 433–443Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Andrea Perna
    • 1
  • Christian Jost
    • 1
  • Etienne Couturier
    • 2
  • Sergi Valverde
    • 1
    • 3
  • Stéphane Douady
    • 2
  • Guy Theraulaz
    • 1
  1. 1.Centre de Recherches sur la Cognition Animale, CNRS UMR 5169Université Paul SabatierToulouse Cedex 9France
  2. 2.Laboratoire Matière et Systèmes Complexes (MSC)UMR 7057 CNRS & Université Paris DiderotParis CEDEX 13France
  3. 3.ICREA-Complex Systems LabUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations