Naturwissenschaften

, Volume 95, Issue 8, pp 775–779

Male-biased predation of a cave fish by a giant water bug

  • Michael Tobler
  • Courtney M. Franssen
  • Martin Plath
Short Communication

Abstract

Male-biased predation has been described from several epigean species, and in many cases, intrinsic differences between the sexes (such as male ornaments) have been suggested as an explanation. Here we report on male-biased predation of a cave fish (Poecilia mexicana) by an aquatic insect (Belostoma sp.) in a Mexican sulfur cave. P. mexicana use aquatic surface respiration (ASR) to survive in their sulfidic, hypoxic habitat. We found that males typically exhibit more ASR activity than females, which leads to increased exposure to the sit-and-wait predator that catches fish near the water surface. Our finding is novel, because male vulnerability to predation is not directly related to male traits involved in courtship, but rather due to other sexual differences in behavior and ultimately, oxygen demands.

Keywords

Belostoma Male-biased mortality Oxygen demands Poecilia mexicana (Poeciliidae) Predator–prey interaction 

References

  1. Acharya L (1995) Sex-biased predation on moths by insectivorous bats. Anim Behav 49:1461–1468CrossRefGoogle Scholar
  2. Andreev OA (1994) The behavior of male and female guppies in an unfamiliar environment. J Ichthyol 34:139–143Google Scholar
  3. Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24:21–62CrossRefGoogle Scholar
  4. Burk T (1982) Evolutionary significance of predation on sexually signaling males. Florida Entomologist 65:90–104CrossRefGoogle Scholar
  5. Chen K, Morris J (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537CrossRefGoogle Scholar
  6. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458CrossRefGoogle Scholar
  7. Cline JD, Richards F (1969) Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ Sci Technol 3:838–843CrossRefGoogle Scholar
  8. Costantini D, Bruner E, Fanfani A, Dell’Omo G (2007) Male-biased predation of western lizards by Eurasian kestrels. Naturwissenschaften 94:1015–1020PubMedCrossRefGoogle Scholar
  9. Curtis C, Bartholomew T, Rose F, Dodgson K (1972) Detoxication of sodium 35S-sulphide in the rat. Biochem Pharmacol 21:2313–2321PubMedCrossRefGoogle Scholar
  10. Domenici P, Steffensen JF, Batty RS (2000) The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring. J Fish Biol 57:1526–1538CrossRefGoogle Scholar
  11. Domenici P, Ferrari RS, Steffensen JF, Batty RS (2002) The effects of progressive hypoxia in school structure and dynamics in Atlantic herring Clupea harengus. Proc R Soc Lond B 269:2103–2111CrossRefGoogle Scholar
  12. Domenici P, Lefrancois C, Shingles A (2007) Hypoxia and the antipredator behaviours of fishes. Phil Trans R Soc Lond B 362:2105–2121CrossRefGoogle Scholar
  13. Endler JA (1980) Natural selection on color patterns in Poecilia reticulata. Evolution 34:76–91CrossRefGoogle Scholar
  14. Endler JA (1987) Predation, light intensity and courtship behaviour in Poecilia reticulata (Pisces: Poeciliidae). Anim Behav 35:1376–1385CrossRefGoogle Scholar
  15. Farr JA (1989) Sexual selection and secondary sexual differentiation in poeciliids: Determinants of male mating success and the evolution of female choice. In: Meffe GK, Snelson FF (eds) Ecology and evolution of lifebearing fishes (Poeciliidae). Prentice Hall, New Jersey, pp 91–123Google Scholar
  16. Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481CrossRefGoogle Scholar
  17. Godin JGJ, McDonough HE (2003) Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav Ecol 14:194–200CrossRefGoogle Scholar
  18. Gordon MS, Rosen DE (1962) A cavernicolous form of the Poeciliid fish Poecilia sphenops from Tabasco, México. Copeia 1962:360–368CrossRefGoogle Scholar
  19. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Annu Rev Physiol 60:33–53PubMedCrossRefGoogle Scholar
  20. Griffiths SW, Magurran AE (1998) Sex and schooling behaviour in Trinidadian guppies. Anim Behav 56:689–693PubMedCrossRefGoogle Scholar
  21. Houde AE (1997) Sex, color, and mate choice in guppies. Princeton University Press, PrincetonGoogle Scholar
  22. Ip YK, Kuah SSL, Chew SF (2004) Strategies adopted by the mudskipper Boleophthalmus boddaerti to survive sulfide exposure in normoxia or hypoxia. Physiol Biochem Zool 77:824–837PubMedCrossRefGoogle Scholar
  23. Israeli D, Kimmel E (1996) Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision. Aquacult Eng 15:423–440CrossRefGoogle Scholar
  24. Jennings D, Houseweart M (1989) Sex-biased predation by web-spinning spiders (Araneae) on spurce budworm moths. J Archnol 17:179–194Google Scholar
  25. Kramer D, Mehegan J (1981) Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Environ Biol Fish 6:299–313CrossRefGoogle Scholar
  26. Kramer D, Manley D, Bourgeois R (1983) The effect of respiratory mode and oxygen concentration on the risk of aerial predation in fishes. Can J Zool 61:653–665CrossRefGoogle Scholar
  27. Lefrançois C, Domenici P (2006) Locomotor kinematics and responsiveness in the escape behaviour of European sea bass (Dicentrarchus labrax) exposed to hypoxia. Mar Biol 149:969–977CrossRefGoogle Scholar
  28. Lefrançois C, Shingles A, Domenici P (2005) The effect of hypoxia on locomotor performance and behaviour during escape in the golden grey mullet (Liza aurata). J Fish Biol 67:1–19CrossRefGoogle Scholar
  29. Lewis W (1970) Morphological adaptations of cyprinodontoids for inhabiting oxygen deficient waters. Copeia 1970:319–326CrossRefGoogle Scholar
  30. Lode T, Holveck M, Lesbarreres D, Pagano A (2004) Sex-biased predation by polecats influences the mating system of frogs. Proc R Soc Lond B 271:S399–S401CrossRefGoogle Scholar
  31. Macías Garcia C, Jimenez G, Contreras B (1994) Correlational evidence for a sexually-selected handicap. Behav Ecol Sociobiol 35:253–259CrossRefGoogle Scholar
  32. Macías Garcia C, Saborío E, Berea C (1998) Does male biased predation lead to male scarcity in viviparous fish? J Fish Biol 53:104–117CrossRefGoogle Scholar
  33. Magnhagen C (1991) Predation risk as a cost of reproduction. Trends Ecol Evol 6:183–186CrossRefGoogle Scholar
  34. Magurran AE (1998) Population differentiation without speciation. Philos Trans Roy Soc Lond B 353:275–286CrossRefGoogle Scholar
  35. Magurran AE, Nowak MA (1991) Another battle of the sexes: the consequences of sexual asymmetry in mating costs and predation risk in the guppy, Poecilia reticulata. Proc R Soc Lond B 246:31–38CrossRefGoogle Scholar
  36. Magurran AE, Seghers BH (1994) Sexual conflict as a consequence of ecology: evidence from guppy, Poecilia reticulata, populations in Trinidad. Proc R Soc Lond B 255:31–36CrossRefGoogle Scholar
  37. Magurran AE, Macías Garcia C (2000) Sex differences in behaviour as an indirect consequence of mating system. J Fish Biol 57:839–857CrossRefGoogle Scholar
  38. Magurran AE, Seghers BH, Carvalho GR, Shaw PW (1992) Behavioural consequences of an artificial introduction of guppies, Poecilia reticulata, in Trinidad: evidence for the evolution of antipredator behaviour in the wild. Proc R Soc Lond B 248:117–122CrossRefGoogle Scholar
  39. Marshall M, Ganders F (2001) Sex-biased seed predation and the maintenance of females in a gynodioecious plant. Am J Bot 88:1437–1443CrossRefGoogle Scholar
  40. Menke A (1979) Family Belostomatidae—Giant water bugs. In: Menke A (ed) The semiaquatic and aquatic hemiptera of California (Heteroptera: Hemiptera). University of California Press, BerkeleyGoogle Scholar
  41. Moyaho A, Macías Garcia C, Manjarrez J (2004) Predation risk is associated with the geographic variation of a sexually selected trait in a vivivarous fish (Xenotoca variata). J Zool (Lond) 262:165–270CrossRefGoogle Scholar
  42. Plath M (2008) Male mating behavior and costs of sexual harassment for females in cavernicolous and extremophile populations of Atlantic mollies (Poecilia mexicana). Behaviour 145:73–98CrossRefGoogle Scholar
  43. Plath M, Parzefall J, Schlupp I (2003) The role of sexual harassment in cave- and surface-dwelling populations of the Atlantic molly, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 54:303–309CrossRefGoogle Scholar
  44. Plath M, Parzefall J, Körner KE, Schlupp I (2004a) Sexual selection in darkness? Female mating preferences in surface- and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behav Ecol Sociobiol 55:596–601CrossRefGoogle Scholar
  45. Plath M, Arndt M, Parzefall J, Schlupp I (2004b) Size-dependent male mating behaviour in the cave molly Poecilia mexicana (Poeciliidae, Teleostei). Subterran Biol 2:59–64Google Scholar
  46. Plath M, Makowicz A, Schlupp I, Tobler M (2007a) Sexual harassment in live-bearing fishes (Poeciliidae): comparing courting and noncourting species. Behav Ecol 18:680–688CrossRefGoogle Scholar
  47. Plath M, Tobler M, Garcia de Leon FJ, Giere O, Schlupp I (2007b) Survival in an extreme habitat: the role of behaviour and energy limitation. Naturwissenschaften 94:991–996PubMedCrossRefGoogle Scholar
  48. Quinn T, Kinnison MT (1999) Size-selective and sex-selective predation by brown bears on stockeye salmon. Oecologia 121:273–282CrossRefGoogle Scholar
  49. Reznick D, Endler J (1982) The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36:160–177CrossRefGoogle Scholar
  50. Rodd FH, Reznick DN (1997) Variation in the demography of guppy populations: the importance of predation and life histories. Ecology 78:405–418Google Scholar
  51. Ryan MJ, Tuttle M, Rand AS (1982) Bat predation and sexual advertisement in a neotropical anuran. Am Nat 119:136–139CrossRefGoogle Scholar
  52. Sommer S (2000) Sex-specific predation on a monogamous rat, Hypogeomys antimena (Muridae: Nesomyinae). Anim Behav 59:1087–1094PubMedCrossRefGoogle Scholar
  53. Taylor DL, Eggleston DB (2000) Effects of hypoxia on an estuarine predator-prey interaction: foraging behavior and mutual interference in the blue crab Callinectes sapidus and the infaunal clam prey Mya arenaria. Mar Ecol Prog Ser 196:221–237CrossRefGoogle Scholar
  54. Tobler M, Schlupp I, Heubel K, Riesch R, Garcia de Leon FJ, Giere O, Plath M (2006) Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10:577–585PubMedCrossRefGoogle Scholar
  55. Tobler M, Schlupp I, Plath M (2007) Predation of a cave fish (Poecilia mexicana, Poeciliidae) by a giant water-bug (Belostoma, Belostomatidae) in a Mexican sulfur cave. Ecol Entomol 32:492–495CrossRefGoogle Scholar
  56. Torrans E, Clemens H (1982) Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comp Biochem Physiol 71C:183–190Google Scholar
  57. Trexler J, Tempe R, Travis J (1994) Size-selective predation of Sailfin mollies by two species of heron. Oikos 69:250–259CrossRefGoogle Scholar
  58. Wolf NG, Kramer D (1987) Use of cover and the need to breathe: the effects of hypoxia on vulnerability of dwarf gouramis to predatory snakeheads. Oecologia 73:127–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Michael Tobler
    • 1
    • 2
  • Courtney M. Franssen
    • 2
  • Martin Plath
    • 3
    • 4
  1. 1.Zoologisches InstitutUniversität ZürichZurichSwitzerland
  2. 2.Department of ZoologyUniversity of OklahomaNormanUSA
  3. 3.Abteilung für Evolutionsbiologie und Systematische Zoologie, Institut für Biochemie und BiologieUniversität PotsdamPotsdamGermany
  4. 4.Abteilung für Tierökologie, Institut für Biochemie und BiologieUniversität PotsdamPotsdamGermany

Personalised recommendations