Skip to main content

Advertisement

Log in

Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi

  • Original Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Caudal autotomy is an effective antipredator strategy widespread among lizards. The shed tail thrashes vigorously for long periods to distract the predator and facilitate the lizard’s escape. This movement is maintained by energy supplied by the anaerobic conversion of glycogen into lactate. It has been suggested that lactate accumulation serves as an index for the vigor of tail thrashing. We made three predictions: (1) tail loss frequency should be higher under heavier predation regime, (2) the duration of postautotomy tail movement should be extended in populations under heavy predation pressure as an adaptation to the higher risk and the increased need for defense, and (3) as result, lactate in these tail tissues should be concentrated at higher levels. To eliminate the impact of phylogeny and environmental factors on the interpretation of our result, we focused exclusively on one species, the Balearic lizard (Podarcis lilfordi). We studied three populations under different predation pressure but sharing the same climatic conditions. We found no differences among the studied populations either in postautotomy duration of tail movement or in levels of final lactate accumulation while autotomy frequency was higher where predation pressure was more intense. Τail loss effectiveness is directly influenced by the level of predation, while secondary features of the trait appear to remain independent from the impact of environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamopoulou C, Pafilis P, Valakos E (1999) Diet composition of Podarcis milensis, Podarcis gaigeae and Podarcis erhardii (Sauria: Lacertidae) during summer. Bonn Zool Beitr 48:275–282

    Google Scholar 

  • Arnold EN (1984) Evolutionary aspects of tail shedding in lizards and their relatives. J Nat Hist 18:127–169

    Article  Google Scholar 

  • Arnold EN (1988) Caudal autotomy as a defense. In: Gans C, Huey RB (eds) Biology of the reptilia 16, ecology B: defense and life history. Alan R Liss, New York, pp 235–273

    Google Scholar 

  • Bellairs DA, Bryant SV (1985) Autotomy and regeneration in reptiles. In: Gans BC, Billet F (eds) Biology of the reptilia 15, development. Wiley, New York, pp 301–410

    Google Scholar 

  • Brown RP, Pérez-Mellado V (1994) Ecological energetics and food acquisition in dense Menorcan islet populations of the lizard Podarcis lilfordi. Funct Ecol 8:427–434

    Article  Google Scholar 

  • Caloi L, Kotsakis T, Palombo MR (1988) La fauna a vertebrati terrestri del Pleistocene delle isole del Mediterraneo. Bull Ecol 19:131–151

    Google Scholar 

  • Chapple DG, Swain R (2002) Effect of caudal autotomy on locomotor performance in a viviparous skink, Niveoscincus metallicus. Funct Ecol 16:817–825

    Article  Google Scholar 

  • Chondropoulos BP, Maragou P, Valakos ED (1993) Food consumption of Podarcis taurica ionica (Lehrs, 1902) in the Ionian islands (Greece). In: Valakos ED, Boehme W, Pérez -Mellado V, Maragou P (eds) Lacertids of the Mediterranean Region: a biological approach. Hellenic Zoological Society, Athens, pp 173–182

    Google Scholar 

  • Clark DR (1971) The strategy of tail autotomy in the ground skink Lygosoma laterale. J Exp Zool 176:295–302

    Article  PubMed  Google Scholar 

  • Congdom JD, Vitt LJ, King WW (1974) Geckos: adaptive significance and energetics of tail autotomy. Science 184:1379–1380

    Article  Google Scholar 

  • Cooper WE, Pérez-Mellado V, Vitt LJ (2004) Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J Zool 262:243–255

    Article  Google Scholar 

  • Dial BE, Fitzpatrick LC (1981) The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51:310–317

    Article  Google Scholar 

  • Dial BE, Fitzpatrick LC (1983) Lizard tail autotomy: function and energetics of postautotomy tail movement in Scinella lateralis. Science 219:391–393

    Article  PubMed  Google Scholar 

  • Fox SF, McCoy JK (2000) The effect of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stransburiana in the field. Oecologia 122:327–334

    Article  Google Scholar 

  • Fox SF, Rostker MA (1982) Social cost of tail loss in Uta strasburiana. Science 218:692–693

    Article  PubMed  Google Scholar 

  • Gleeson TT (1996) Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Annu Rev Physiol 58:565–581

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DL, Pinshow B (2006) Taking physiology to the field: using physiological approaches to answer questions about animals in their environment. Physiol Biochem Zool 79:237–241

    Article  PubMed  Google Scholar 

  • Hohorst HJ (1965) L- (+) lactate determination with lactate dehydrogonase and DNP. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 266–270

    Google Scholar 

  • Huey RB (1987) Phylogeny, history and the comparative method. In: Feder ME, Bennett AF, Burggren WW, Huey RB (eds) New directions in ecological physiology. Cambridge University Press, Cambridge, pp 76–101

    Google Scholar 

  • Kotsakis T (1981) Le lucertole (Lacertidae, Squamata) del Pliocene, Pleistocene e Olocene delle Baleari. Boll Soc Hist Nat Balears 25:135–150

    Google Scholar 

  • Martin J, Avery RA (1998) Effects of tail loss on the movement patterns of the lizard, Psammodromus algirus. Funct Ecol 12:794–802

    Article  Google Scholar 

  • Martin J, Salvador A (1992) Tail loss consequences on habitat use by the Iberian rock-lizard, Lacerta monticola. Oikos 65:328–333

    Article  Google Scholar 

  • Meyer V, Preest MR, Lochetto SM (2002) Physiology of original and regenerated lizard tails. Herpetologica 58:75–86

    Article  Google Scholar 

  • Naya DE, Bozinovic F (2006) The role of ecological interactions on the physiological flexibility of lizards. Funct Ecol 20:601–608

    Article  Google Scholar 

  • Pafilis P, Valakos ED, Foufopoulos J (2005) Comparative postautotomy tail activity in six Mediterranean lacertid species. Physiol Biochem Zool 78:828–838

    Article  PubMed  Google Scholar 

  • Pérez-Mellado V (1989) Estudio ecologico de la lagartija balear Podarcis lilfordi (Gunther, 1874) en Menorca. Rev Menorca 53:455–511

    Google Scholar 

  • Pérez-Mellado V (1998) Podarcis lilfordi (Günther, 1874). In: Ramos MA et al (ed) Fauna Ibérica 10, Reptiles. Museo Nacional de Ciencias Naturales, Madrid, pp 272–282

    Google Scholar 

  • Pérez-Mellado V, Corti C, LoCascio P (1997) Tail autotomy and extinction in Mediterranean lizards. A preliminary study of continental and insular populations. J Zool 243:553–541

    Google Scholar 

  • Pérez-Mellado V, Perera A, Cortázar G (2003) La Lagartija balear, Podarcis lilfordi (Günther, 1884) de l’ Illa d’ en Colom, Parc Natural de s’ Albufera des Grau (Menorca). Situación actual y estado de conservación. Bul Cien Esp Prot Bal 1:23–34

    Google Scholar 

  • Pianka E (2001) The role of phylogenetics in evolutionary ecology. In: Lymberakis P, Valakos E, Pafilis P, Mylonas M (eds) Herpetologia Candiana. S.E.H, Iraklion, pp 1–20

    Google Scholar 

  • Pough FH, Andrews RM (1985) Use of anaerobic metabolism by free-ranging lizards. Physiol Zool 58:205–213

    Google Scholar 

  • Salvador A (1986) Podarcis lilfordi (Gunther, 1874)—Balearen—Eidechse. In: Boehme W (ed) Handbuch der Reptilien und Amphibien Europas 2, Echsen 3. Aula, Wiesbaden, pp 83–110

    Google Scholar 

  • Schoener TW (1979) Inferring the properties of predation and other injury-producing agents from injury frequencies. Ecology 60:1110–1115

    Article  Google Scholar 

  • Seifter U, Dayton S, Novic B, Muntwyler E (1950) The estimation of glycogen with anthrone reagent. Arch Biochem 24:191–200

    Google Scholar 

  • Turner FB, Medica PA, Jennrich RI, Maza BG (1982) Frequencies of broken tails among Uta stansburiana in southern Nevada and a test of the predation hypothesis. Copeia 1982:835–840

    Article  Google Scholar 

  • Vitt LJ, Cooper WE (1986) Tail loss, tail color, and predator escape in Eumeces (Lacertilia: Scincidae): age-specific differences in costs and benefits. Can J Zool 64:583–592

    Article  Google Scholar 

  • Vitt LJ, Congdom JD, Dickson NA (1977) Adaptive strategies and energetics of tail autotomy in lizards. Ecology 58:326–337

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our deep gratitude for the linguistic revision to Johannes Foufopoulos. All experiments comply with Spanish and Greek legislation for the Protection of Wildlife and Environment. All animals were released after the experimental procedure, and none was killed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios Valakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi . Naturwissenschaften 95, 217–221 (2008). https://doi.org/10.1007/s00114-007-0320-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0320-5

Keywords

Navigation