Skip to main content
Log in

Convergent evolution in the antennae of a cerambycid beetle, Onychocerus albitarsis, and the sting of a scorpion

  • Short Communication
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Venom-injecting structures have arisen independently in unrelated arthropods including scorpions, spiders, centipedes, larval owlflies and antlions, and Hymenoptera (wasps, ants, and bees). Most arthropods use venom primarily as an offensive weapon to subdue prey, and only secondarily in defense against enemies. Venom is injected by biting with fangs or stinging with a specialized hypodermic structure used exclusively for the delivery of venom (usually modified terminal abdominal segments). A true sting apparatus, previously known only in scorpions and aculeate wasps, is now known in a third group. We here report the first known case of a cerambycid beetle using its antennae to inject a secretion that causes cutaneous and subcutaneous inflammation in humans. Scanning electron microscopy revealed that the terminal antennal segment of Onychocerus albitarsis (Pascoe) has two pores opening into channels leading to the tip through which the secretion is delivered. This is a novel case of convergent evolution: The delivery system is almost identical to that found in the stinger of a deadly buthid scorpion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Allison JD, Borden JH, Seybold SJ (2004) A review of the chemical ecology of the Cerambycidae (Coleoptera). Chemoecology 14:123–150

    Article  CAS  Google Scholar 

  • Blum MS (1996) Semiochemical parsimony in the Arthropoda. Annu Rev Entomol 41:353–374

    Article  PubMed  CAS  Google Scholar 

  • de Júlio CE A, Monné MA (2001) Onychocerus Lepeletier & Audinet-Serville, 1830 (Coleoptera, Cerambycidae, Lamiinae, Anisocerini): Espécies novas e chave para identificação. Bol Mus Nac 443:1–8

    Google Scholar 

  • Ehret-Sabatier L, Loews D, Goyffon M, Fehlbaum P, Hoffman JA, van Dorsselaer A, Bulet P (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. J Biol Chem 271:29537–29544

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi D, Engel M (2005) Evolution of the insects. Cambridge University Press, New York

    Google Scholar 

  • Hermann HR (1971) Sting autotomy, a defensive mechanism in certain social Hymenoptera. Insectes Sociaux 18:111–120

    Article  Google Scholar 

  • Hjelle JT (1990) Anatomy and morphology. In: Polis GA (ed) The biology of scorpions. Stanford University Press, Stanford, pp 9–63

    Google Scholar 

  • Laurent P, Braekman J-C, Daloze D (2005) Insect chemical defense. Top Curr Chem 240:167–229

    CAS  Google Scholar 

  • Lawrence JF (1982) Coleoptera. In: Parker S (ed) Synopsis and classification of living organisms. McGraw Hill, New York, pp 482–553

    Google Scholar 

  • Linsley EG (1959) The ecology of the Cerambycidae. Annu Rev Entomol 4:99–138

    Article  Google Scholar 

  • Martins UR, Galileo MHM, Santos-Silva A, Rafael JA (2006) Cerambycidae (Coleoptera) coletados a luz a 45 metros de altura, no dossel da floresta amazônica, e a descrição de quatro espécies novas. Acta Amazonica 36:265–272

    Article  Google Scholar 

  • Mebs D (2002) Venomous and poisonous animals: a handbook for biologists, toxicologists and toxinologists, physicians and pharmacists. Medpharm Scientific Publishers, Stuttgart

    Google Scholar 

  • Monné MM (2001) Catalogue of the Neotropical Cerambycidae (Coleoptera) with known host plant—Part III: Subfamily Lamiinae, tribes Acanthocinini to Apomecynini. Publ Avul Mus Nac 92:1–94

    Google Scholar 

  • Pitman NCA (2005) An overview of the Los Amigos watershed, Madre de Dios, southeastern Peru. Unpublished report available from the author at http://npitman@amazonconservation.org

  • Schofield RMS, Nesson MH, Richardson KA, Wyeth P (2003) Zinc is incorporated into cuticular “tools” after ecdysis: The time course of the zinc distribution in “tools” and whole bodies of an ant and a scorpion. J Insect Physiol 49:31–44

    Article  PubMed  CAS  Google Scholar 

  • Smith HH (1884) Antennae of a beetle used as defensive weapons. Am Nat 18:727–728

    Google Scholar 

  • Taib NT, Jarrar BM (1993) Histological and histochemical characterization of the venom apparatus of Palestine yellow scorpion, Leiurus quinquestriatus Hemprich & Ehrenberg 1828. Trop Zool 6:143–152

    Google Scholar 

  • Tavakilian G, Berkov A, Meurer-Grimes B, Mori S (1997) Neotropical tree species and their faunas of xylophagous longicorns (Coleoptera: Cerambycidae) in French Guiana. Bot Rev 63:303–355

    Article  Google Scholar 

  • Ueda K, Imamura M, Saito A, Sato R (2005) Purification and cDNA cloning of an insect defensin from larvae of the longicorn beetle, Acalolepta luxuriosa. Appl Entomol Zool 40:335–345

    Article  CAS  Google Scholar 

  • Veiga LM, Ferrari SF (2006) Predation of arthropods by southern bearded sakis (Chirapotes satanas) in Eastern Brazilian Amazonia. Am J Primatol 68:209–215

    Article  PubMed  Google Scholar 

  • Weatherston J, Percy JE (1978) Venoms of Coleoptera. In: Bettini S (ed) Arthropod venoms (handbook of experimental pharmacology: New series; v. 48). Springer, Berlin, pp 511–554

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from The American Philosophical Society, The City University of New York PSC-CUNY Research Award Program, and The National Science Foundation RIG 0542276. Specimens were generously provided by Dr. Lorenzo Prendini and Randy Mercurio (L. quinquestriatus) and Dr. Lee Herman (O. crassus) at the Division of Invertebrate Zoology, American Museum of Natural History. Special thanks to Cláudia Moreno and João Vasconcelos (UNICAMP, Brazil), who first drew our attention to the stinging cerambycid, the Asociación para la Conservación de la Cuenca Amazónica and INRENA for facilitating field research in Peru, Dr. Scott Mori (New York Botanical Garden) for manuscript review, Dr. Jorge Morales (CCNY), for guidance with SEM, and Frank Hovore, for unflagging skepticism. This study complies with the laws of Peru and the USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Berkov.

Electronic Supplementary Material

Below is the linked to the electronic supplementary material.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkov, A., Rodríguez, N. & Centeno, P. Convergent evolution in the antennae of a cerambycid beetle, Onychocerus albitarsis, and the sting of a scorpion. Naturwissenschaften 95, 257–261 (2008). https://doi.org/10.1007/s00114-007-0316-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0316-1

Keywords

Navigation