Skip to main content
Log in

Supramolecular chemistry—general principles and selected examples from anion recognition and metallosupramolecular chemistry

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the “chemistry of the noncovalent bond.” Molecular recognition is based on geometrical complementarity based on the “key-and-lock” principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albrecht M (1999) Into the next dimension: nanometer-sized, oligonuclear coordination compounds with C3-symmetric ligands. Angew Chem Int Ed 38:3463–3465

    Article  CAS  Google Scholar 

  • Albrecht M (2001) “Let’s twist again”—double-stranded, triple-stranded and circular helicates. Chem Rev 101:3457–3498

    Article  PubMed  CAS  Google Scholar 

  • Albrecht M, Stortz P (2005) Metallacyclopeptides: artificial analogues of naturally occurring peptides. Chem Soc Rev 496–506

  • Albrecht M, Napp M, Schneider M (2001a) The synthesis of amino acid bridged dicatechol derivatives. Synthesis:468–472

  • Albrecht M, Napp M, Schneider M, Weis P, Fröhlich R (2001b) Kinetic versus thermodynamic control of the self-assembly of isomeric double-stranded dinuclear titanium(IV) complexes from phenylalanine-bridged dicatechol ligands. Chem Commun 409–410

  • Albrecht M, Napp M, Schneider M, Weis P, Fröhlich R (2001c) Dinuclear titanium(IV) complexes from amino acid-bridged dicatechol ligands: formation, structure, and conformational analysis. Chem Eur J 7:3966–3975

    Article  CAS  Google Scholar 

  • Albrecht M, Janser I, Meyer S, Weis P, Fröhlich R (2003) A metallosupramolecular tetrahedron with a huge internal cavity. Chem Commun 2854–2855

  • Albrecht M, Janser I, Fröhlich R (2004a) Synthesis of triscatechol derivatives—building blocks with an idealized C3-symmetry for metallo-supramolecular chemistry. Synthesis 1977–1982

  • Albrecht M, Janser I, Runsink J, Raabe G, Weis P, Fröhlich R (2004b) Selecting different complexes from a dynamic combinatorial library of coordination compounds. Angew Chem Int Ed 43:6662–6666

    Article  CAS  Google Scholar 

  • Albrecht M, Triyanti, de Groot M, Bahr M, Weinhold E (2005a) A fluorescent quinoline derivative as selective receptor for fluoride anions. Synlett 2095–2097

  • Albrecht M, Mirtschin S, de Groot M, Janser I, Runsink J, Raabe G, Kogej M, Schalley CA, Fröhlich R (2005b) Hierarchical assembly of helicate-type dinuclear titanium(IV) complexes. J Am Chem Soc 127:10371–10387

    Article  PubMed  CAS  Google Scholar 

  • Albrecht M, Nolting R, Weis P (2005c) Preparation of amino acid-bridged dicatechol ligands for dinuclear titanium(IV) complexes. Synthesis 1125–1135

  • Albrecht M, Baumert M, Klankermayer J, Kogej M, Schalley CA, Fröhlich R (2006a) Dicatechol cis-dioxomolybdenum(VI): a building block for a lithium cation templated monomer-dimer equilibrium. Dalton Trans 4395–4400

  • Albrecht M, Janser I, Burk S, Weis P (2006b) Self-assembly and host–guest chemistry of big metallosupramolecular M4L4 tetrahedra. Dalton Trans 2875–2880

  • Albrecht M, Triyanti, Schiffers S, Osetska O, Raabe G, Wieland T, Russo T, Rissanen K (2007a) Anion receptors based on a quinoline backbone. Eur J Org Chem 2850–2858

  • Albrecht M, Fiege M, Baumert M, de Groot M, Fröhlich R, Russo L, Rissanen K (2007b) Hierarchical lithium-templated assembly of helicate-type complexes: how versatile is this reaction? Eur J Inorg Chem 609–616

  • Albrecht M, Burk S, Stoffel R, Lüchow A, Fröhlich R, Kogej M, Schalley CA (2007c) Protonation of tris(iminocatecholate) complexes of gallium(III) and titanium(IV). Eur J Inorg Chem 1361–1372

  • Amabilino DB, Stoddart JF (1995) Interlocked and intertwined structures and superstructures. Chem Rev 95:2725–2828

    Article  CAS  Google Scholar 

  • Ariga K, Kunitake T (1998) Molecular recognition at air–water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc Chem Res 31:371–378

    Article  CAS  Google Scholar 

  • Ariga K, Kunitake T (2006) Supramolecular chemistry. Fundamentals and applications. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Badjić JD, Cantrill SJ, Grubbs RH, Guidry EN, Orenes R, Stoddart RF (2004) The exclusivity of multivalency in dynamic covalent processes. Angew Chem Int Ed 43:3273–3278

    Article  Google Scholar 

  • Beer PD, Gale PA, Smith DK (1999) Supramolecular chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Bianchi A, Bowman-James K, Garcia-Espana E (1997) Supramolecular chemistry of anions. Wiley, New York, NY

    Google Scholar 

  • Carrano CJ, Raymond KN (1978) Coordination chemistry of microbial iron transport. 10. Characterization of the complexes of Rhodotorulic acid, a dihydroxamate siderophore. J Am Chem Soc 100:5371–5374

    Article  CAS  Google Scholar 

  • Caulder D, Raymond KN (1999) The rational design of high symmetry coordination clusters. J Chem Soc Dalton Trans 1185–1200

  • Clapham G, Shipman M (1999) Selective complexation of 2-hydroxyethyl esters using Lewis acids. Tetrahedron Lett 40:5639–5642

    Article  CAS  Google Scholar 

  • Constable EC (1991) Helices, supramolecular chemistry, and metal-directed self-assembly. Angew Chem Int Ed Engl 30:1450–1451

    Article  Google Scholar 

  • Corbett PT, Leclaire J, Vial L, West KR, Wietor J-L, Sanders JKM, Otto S (2006) Dynamic combinatorial chemistry. Chem Rev 106:3652–3711

    Article  PubMed  CAS  Google Scholar 

  • Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415:287–294

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich P (1906) Studies on immunity. Wiley, New York, NY

    Google Scholar 

  • Fiedler D, Leung DH, Bergman RG, Raymond KN (2005) Selective molecular recognition, C–H bond activation, and catalysis in nanoscale reaction vessels. Acc Chem Res 38:349–358

    Article  PubMed  CAS  Google Scholar 

  • Fischer E (1894) Einfluss der Configuration auf die Wirkung der Enzyme. Ber Deutsch Chem Ges 28:2985–2993

    Article  Google Scholar 

  • Fujita M, Tominaga M, Hori A, Therrien B (2005) Coordination assemblies from a Pd(II)-cornered square complex. Acc Chem Res 38:369–378

    Article  PubMed  CAS  Google Scholar 

  • Goshe AJ, Steele IM, Ceccarelli C, Rheingold AL, Bosnich B (2002) Supramolecular recognition: on the kinetic lability of thermodynamically stable host–guest association complexes. Proc Natl Acad Sci U S A 99:4823–4829

    Article  PubMed  CAS  Google Scholar 

  • Greig LM, Philp D (2001) Applying biological principles to the assembly and selection of synthetic superstructures. Chem Soc Rev 30:287–302

    Article  CAS  Google Scholar 

  • Grote Z, Scopelliti R, Severin K (2003) Adaptive behavior of dynamic combinatorial libraries generated by assembly of different building blocks. Angew Chem Int Ed 42:3821–3825

    Article  CAS  Google Scholar 

  • Hamacek J, Borkovec M, Piguet C (2005a) A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes—part 1: theoretical concepts and application to monometallic coordination complexes and bimetallic helicates possessing identical binding sites. Chem Eur J 11:5217–5226

    Article  CAS  Google Scholar 

  • Hamacek J, Borkovec M, Piguet C (2005b) A simple thermodynamic model for quantitatively addressing cooperativity in multicomponent self-assembly processes—part 2: extension to multimetallic helicates possessing different binding sites. Chem Eur J 11:5227–5237

    Article  CAS  Google Scholar 

  • Hider RC, Liu ZD (2004) Siderophores. In: Atwood JL, Steed JW (eds) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York, NY, pp 1278–1290

    Google Scholar 

  • Klug A (1983) From macromolecules to biological assemblies. Angew Chem Int Ed Engl 22:565–582

    Article  Google Scholar 

  • König B (1995) Molecular recognition. The principle and recent chemical examples. J Prakt Chem 337:339–346

    Article  Google Scholar 

  • Lawrence DS, Jiang T, Levett M (1995) Self-assembling supramolecular complexes. Chem Rev 95:2229

    Article  CAS  Google Scholar 

  • Lehn J-M (1988) Supramolecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed Engl 27:89–112

    Article  Google Scholar 

  • Lehn J-M (1990) Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed Engl 29:1304–1319

    Article  Google Scholar 

  • Lehn J-M (1994) Perspectives in supramolecular chemistry: from molecular recognition towards self-organization. Pure Appl Chem 66:1961–1966

    Article  CAS  Google Scholar 

  • Lehn J-M (1995) Supramolecular chemistry—concepts and perspectives. VCH, Weinheim

    Google Scholar 

  • Lehn J-M (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5:2455–2463

    Article  CAS  Google Scholar 

  • Lehn J-M (2000) Programmed chemical systems: multiple subprogrammes and multiple processing/expression of molecular information. Chem Eur J 6:2097–2102

    Article  CAS  Google Scholar 

  • Lehn J-M, Rigault A, Siegel J, Harrowfield J, Chevrier B, Moras D (1987) Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: structure of an inorganic double helix. Proc Natl Acad Sci U S A 84:2565–2569

    Article  PubMed  CAS  Google Scholar 

  • Lindsey JS (1991) Self-assembly in synthetic routes to molecular devices. Biological principles and chemical perspectives: a review. New J Chem 15:153–180

    CAS  Google Scholar 

  • Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, CA

    Google Scholar 

  • Lützen A (2005) Self-assembled molecular capsules—even more than nano-sized reaction vessels. Angew Chem Int Ed 44:1000–1002

    Article  Google Scholar 

  • MacGillivray LR, Atwood JL (1999) Structural classification and general principles for the design of spherical molecular hosts. Angew Chem Int Ed 38:1018–1033

    Article  CAS  Google Scholar 

  • Park CH, Simmons HE (1968) Macrobicyclic amines. III. Encapsulation of halide ions by in,in-1,(k + 2)-diazabicyclo[k.l.m.]alkane ammonium ions. J Am Chem Soc 90:2431–2432

    Article  CAS  Google Scholar 

  • Pedersen C (1988) The discovery of crown ethers. Angew Chem Int Ed 27:1021–1027

    Article  Google Scholar 

  • Percec V, Cho W-D, Ungar G, Yeardley DJP (2000) From molecular flat tapers, discs, and cones to supramolecular cylinders and spheres using Fréchet-type monodendrons modified on their periphery. Angew Chem Int Ed 39:1597–1602

    Article  Google Scholar 

  • Philp D, Stoddart F (1996) Self-assembly in natural and unnatural systems. Angew Chem Int Ed 35:1154–1196

    Article  Google Scholar 

  • Piguet C, Bernardinelli G, Bünzli J-CG (1997) Helicates as versatile supramolecular complexes. Chem Rev 97:2005–2062

    Article  PubMed  CAS  Google Scholar 

  • Rebek J, Wattley RV Jr, Costello T, Gadwood R, Marshall L (1981) Allosteric effects: binding cooperativity in a subunit model. Angew Chem Int Ed 20:605–606

    Article  Google Scholar 

  • Safarowsky O, Windisch B, Mohry A, Vögtle F (2000) Nomenclature for catenanes, rotaxanes, molecular knots and assemblies derived from these structural elements. J Prakt Chem 342:437–444

    Article  CAS  Google Scholar 

  • Schalley CA, Lützen A, Albrecht M (2004) Approaching supramolecular functionality. Chem Eur J 10:1072–1080

    Article  CAS  Google Scholar 

  • Scherer M, Caulder D, Johnson DW, Raymond KN (1999) Coordination number incommensurate cluster formation. Part 11. Triple helicate–tetrahedral cluster interconversion controlled by host–guest interactions. Angew Chem Int Ed 38:1588–1592

    CAS  Google Scholar 

  • Schneider HJ (1991) Mechanisms of molecular recognition: investigations of organic host–guest complexes. Angew Chem Int Ed Engl 30:1417–1436

    Article  Google Scholar 

  • Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, New York

    Google Scholar 

  • Sun X, Johnson DW, Caulder D, Raymond KN, Wong EH (2001) Rational design and assembly of M2M′3L6 supramolecular clusters with C3h symmetry by exploiting incommensurate symmetry numbers. J Am Chem Soc 123:2752–2763

    Article  PubMed  CAS  Google Scholar 

  • Urich T, Gomes CM, Kletzin A, Frazao C (2006) X-ray structure of a self-compartmentalizing sulfur cycle metalloenzyme. Science 311:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Vögtle F (1992) Supramolekulare Chemie. Teubner, Stuttgart

    Google Scholar 

  • Watson JD, Crick FCH (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738

    Article  PubMed  CAS  Google Scholar 

  • Werner A (1893) Beitrag zur Konstitution anorganischer Verbindungen. Z Anorg Chem 3:267–330

    Article  Google Scholar 

  • Whitesides GM, Boncheva M (2002) Beyond molecules: self assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774

    Article  PubMed  CAS  Google Scholar 

  • Whitesides GM, Mathias JP, Seto CT (1991) Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254:1312–1319

    Article  PubMed  CAS  Google Scholar 

  • Williams DH, Stephens E, O’Brien DP, Zhou M (2004) Understanding noncovalent interactions: ligand binding energy and catalytic efficiency from ligand-induced reductions in motion within receptors and enzymes. Angew Chem Int Ed 63:6596–6616

    Article  Google Scholar 

  • Würthner F, Yao S, Beginn U (2003) Highly ordered merocyanine dye assemblies by supramolecular polymerization and hierarchical self-organization. Angew Chem Int Ed 42:3247–3250

    Article  Google Scholar 

Download references

Acknowledgement

I thank all my coworkers and all the collaborating scientists who were involved in the works described and which are mentioned in the reference section. Funding for our work is generously provided by the DFG (especially within the priority program SPP 1118) and by the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Albrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albrecht, M. Supramolecular chemistry—general principles and selected examples from anion recognition and metallosupramolecular chemistry. Naturwissenschaften 94, 951–966 (2007). https://doi.org/10.1007/s00114-007-0282-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0282-7

Keywords

Navigation