Naturwissenschaften

, Volume 94, Issue 12, pp 967–974 | Cite as

The European land leech: biology and DNA-based taxonomy of a rare species that is threatened by climate warming

Original Paper

Abstract

The European land leech Xerobdella lecomtei was discovered in 1868 and is one of the rarest animals on Earth. During the 1960s, several individuals of these approx. 40 mm long, cold-adapted terrestrial annelids that inhabit the moist soils of birch forests around Graz, Austria, were investigated. Only one original research paper has been published on the biology of this species. Between 2001 and 2005, we re-investigated the morphology of preserved specimens and searched for living individuals in their natural habitat that appeared to be intact. We found only one juvenile individual (length approx. 10 mm), indicating that this local leech population became largely extinct over the past four decades. The feeding behaviour of our ‘lonesome George of the annelids’ was studied and is described here in detail. After its death, the Xerobdella individual was used for chemical extraction and molecular studies (deoxyribonucleic acid [DNA] barcoding, based on one gene, the mitochondrial cytochrome c oxidase subunit I). In addition, novel DNA barcodes for a land leech from Madagascar and a recently discovered species from Europe were obtained. Our phylogenetic tree shows that X. lecomtei is not a member of the tropical land leeches (family Haemadipsidae), as previously thought, but represents a separate line of descent (family Xerobdellidae). The decline of the local leech population around Graz correlates with a rise in average summer temperatures of +3°C between 1961 and 2004. This warming led to a drastic reduction in the moisture content of the soil where X. lecomtei lives. We suggest that human-induced climate change without apparent habitat destruction can lead to the extinction of populations of cold-adapted species that have a low colonization ability.

Keywords

Climate warming DNA barcoding Land leeches Xerobdella 

References

  1. Bely AE, Weisblat DA (2006) Lessons from leeches: a call for DNA barcoding in the lab. Evol Develop 8:491–500CrossRefGoogle Scholar
  2. Bhatia ML (1975) Land leeches, their adaptation, and responses to external stimuli. Zool Pol 25:31–53Google Scholar
  3. Blanchard R (1917) Monographie des hemadipsines (Sangsues terrestres). Bull Soc Pathol Exot 10:640–675Google Scholar
  4. Borda E, Siddall ME (2004) Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution. Mol Phylogenet Evol 30:213–225PubMedCrossRefGoogle Scholar
  5. DeSalle R, Egan MG, Siddall M (2005) The unholy trinity: taxonomy, species delimitation and DNA barcoding. Philos Trans R Soc Lond B 360:1905–1916CrossRefGoogle Scholar
  6. Folmer O, Black M, Hoehn W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnolog 3:294–299Google Scholar
  7. Frauenfeld GR (1868) Ein neuer Landegel aus Oesterreich. Verh Zool–Bot Ges Wien 18:147–149Google Scholar
  8. Gepp J, Kreissl E (1988) Zum gegenwärtigen Stand des Vorkommens der Gottesanbeterin, Mantis religiosa L., in der Steiermark (Insecta, Mantodea). Mitt Natwiss Ver Steiermark 118:185–191Google Scholar
  9. Giribet G, Okusu A, Lindgren AR, Huff SW, Schrödl M, Nishiguchi MK (2006) Evidence for a clade composed of molluscs with serially repeated structures: monoplacophorans are related to chitons. Proc Natl Acad Sci USA 103:7723–7728PubMedCrossRefGoogle Scholar
  10. Goodman SM, Benstead JP (2003) The natural history of Madagascar. The University of Chicago Press, ChicagoGoogle Scholar
  11. Grosser C (2004) Haemopis elegans (Hirudinea: Haemopidae)—ein wiederentdecktes europäisches Egeltaxon. Lauterbornia 52:77–86Google Scholar
  12. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  13. Hughes L (2000) Biological consequences of global warming: is the signal already. Trends Ecol Evol 15:56–61PubMedCrossRefGoogle Scholar
  14. Kabas T (2005) Das Klima in Südösterreich 1961–2004: die alpine Region Hohe Tauern und die Region Südoststeiermark im Vergleich. Wegener Center, GrazGoogle Scholar
  15. Kutschera U (2003) The feeding strategies of the leech Erpobdella octoculata (L.): a laboratory study. Int Rev Hydrobiol 88:94–101CrossRefGoogle Scholar
  16. Kutschera U (2006) The infamous blood suckers from Lacus verbanus. Lauterbornia 56:1–4Google Scholar
  17. Kutschera U (2007) Leeches underline the need for Linnaean taxonomy. Nature 447:775PubMedCrossRefGoogle Scholar
  18. Kutschera U, Wirtz P (2001) The evolution of parental care in freshwater leeches. Theory Biosci 120:115–137Google Scholar
  19. Miller C (1999) Conservation of the Open Bay Island’s leech Hirudobdella antipodum. J R Soc N Z 29:301–306Google Scholar
  20. Minelli A (1979) Hirudinea. Edizioni Calderini, BolognaGoogle Scholar
  21. Moosbrugger G, Reisinger E (1971) Zur Kenntnis des europäischen Landblutegels Xerobdella lecomtei (Frauenfeld). Z Wiss Zool 183:1–50Google Scholar
  22. Nesemann H, Neubert E (1999) Annelida, Clitellata. Branchiobdellida, Acanthobdellea, Hirudinea. In: Schwoerbel J, Zwick P (eds) Süßwasserfauna von Mitteleuropa, Vol. 6/2. Spektrum, Heidelberg, pp 1–187Google Scholar
  23. Nicholls H (2006) Lonesome George: the life and loves of a conservation icon. MacMillan, LondonGoogle Scholar
  24. Penecke KA (1896) Bemerkungen über Verbreitung und Lebensweise von Xerobdella lecomtei Frauenfeld. Zool Anz 19:412–413Google Scholar
  25. Pfeiffer I, Brenig B, Kutschera U (2004) The occurrence of an Australian leech species (genus Helobdella) in German freshwater habitats as revealed by mitochondrial DNA sequences. Mol Phylogenet Evol 33:214–219PubMedCrossRefGoogle Scholar
  26. Pfeiffer I, Brenig B, Kutschera U (2005) Molecular phylogeny of selected predaceous leeches with reference to the evolution of body size and terrestrialism. Theory Biosci 124:55–64PubMedCrossRefGoogle Scholar
  27. Reisinger E (1951) Lebensweise und Verbreitung des europäischen Landblutegels (Xerobdella lecomtei Frauenfeld). Carinthia II 141:110–124Google Scholar
  28. Richardson LR (1968) Observations on the Australian land-leech, Chtonobdella limbata (Grube, 1886) (Hirudinea: Haemadipsidae). Aust Zool 14:294–305Google Scholar
  29. Richardson LR (1978) On the zoological nature of land-leeches in the Séchelles Islands, and a consequential revision of the status of land-leeches in Madagascar (Hirudinea: Haemadipsoidea). Rev Zool Afr 92:837–866Google Scholar
  30. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  31. Sawyer RT (1986) Leech biology and behaviour. Clarendon, OxfordGoogle Scholar
  32. Schiermeier Q (2007) What we don't know about climate change. Nature 445:580–581PubMedCrossRefGoogle Scholar
  33. Schuster F (1909) Beiträge zur Kenntnis der Xerobdella lecomtei v. Frauenfeld. Zool Anz 35:75–83Google Scholar
  34. Siddall ME, Budinoff RB (2005) DNA-barcoding evidence for widespread introductions of a leech from the South American Helobdella triserialis complex. Conserv Genet 6:467–472CrossRefGoogle Scholar
  35. Siddall ME, Burreson EM (1998) Phylogeny of leeches (Hirudinea) based on mitochondrial cytochrome c oxidase subunit I. Mol Phylogenet Evol 9:156–162PubMedCrossRefGoogle Scholar
  36. Sims RW, Gerard BM (1985) Earthworms. Brill, LeidenGoogle Scholar
  37. Soos A (1966) Identification key to the leech (Hirudinoidea) genera of the world, with a catalogue of the species. II. Families: Semiscolecidae, Trematobdellidae, Americobdellidae, Diestecostomatidae. Acta Zool Acad Sci Hung 12:145–160Google Scholar
  38. Travis JMJ (2002) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B 270:467–473CrossRefGoogle Scholar
  39. Trontelj P, Sket B, Steinbrück G (1999) Molecular phylogeny of leeches: congruence of nuclear and mitochondrial rDNA data sets and the origin of bloodsucking. J Zool Syst Evol Res 37:141–147CrossRefGoogle Scholar
  40. Waugh J (2007) DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29:188–197PubMedCrossRefGoogle Scholar
  41. Wilson OE (2003) The future of life. Vintage, VancouverGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of BiologyUniversity of KasselKasselGermany
  2. 2.Institute of ZoologyKarl-Franzens-University of GrazGrazAustria

Personalised recommendations