Skip to main content
Log in

Effect of tunnel inclination on digging energetics in the tuco-tuco, Ctenomys talarum (Rodentia: Ctenomyidae)

Naturwissenschaften Aims and scope Submit manuscript

Abstract

Burrows play an important role for many species, providing them with shelter and access to food resources. For subterranean rodents, living underground imposes constraints on morphology and physiology. The convergence in burrow architecture among subterranean rodents has been related to the energy demands imposed by the cost of constructing an entire system. The low frequency of tunnels with downward angles steeper than 40° appears to be a common feature in burrow design. In the subterranean habitat, movements through the soil are expensive and gravity can exert important restrictions on digging energetics when individuals push out the soil removed in steeper digging angles. The aim of this study was to determine the effect of digging angle on digging energetics in Ctenomys talarum. The mass of the removed soil and burrowing speed were similar while digging metabolic rate and net cost of transport were higher in individuals digging in tunnels with angles >40° than in those digging tunnels with angles <40°. The cost of constructing a burrow in the horizontal plane differed by 20% from others in which the natural representation of tunnels >40° was considered. Even given that tunnels >40° represented only 6% of the total burrow length, burrow architecture appears to be constrained by the high energetic cost of constructing in steeper angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Altuna CA (1983) Sobre la estructura de las construcciones de Ctenomys pearsoni Lessa y Langguth, 1983 (Rodentia, Octodontidae). Res Com J Cien Nat 3:70–72

    Google Scholar 

  • Andersen DC (1982) Belowground herbivory: the adaptative geometry of Geomyid burrows. Am Nat 119:18–28

    Article  Google Scholar 

  • Andersen DC (1988) Tunnel-construction methods and foraging path of a fossorial herbivore, Geomys bursarius. J Mammal 69:565–582

    Article  Google Scholar 

  • Antinuchi CD, Busch C (1992) Burrow structure in the subterranean rodent Ctenomys talarum. Z Säugetierkd 57:163–168

    Google Scholar 

  • Antinuchi CD, Zenuto RR, Luna F, Cutrera AP, Perissinotti PP, Busch C (2006) Energy budget in subterranean rodents: insights from the tuco-tuco Ctenomys talarum (Rodentia: Ctenomyidae). Pp. xx-xx in The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson, Kelt DA, Lessa E, Salazar-Bravo JA, Patton JL (eds). University of California Publications in Zoology

  • Armstrong RB, Laughlin MH, Rome L, Taylor CR (1983) Metabolism of rats running up and down an incline. J Appl Physiol 55:518–521

    PubMed  CAS  Google Scholar 

  • Busch C, Antinuchi CD, del Valle JC, Kittlein MJ, Malizia AI, Vassallo AI, Zenuto RR (2000) Population ecology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground. University of Chicago Press, Chicago, pp 183–226

    Google Scholar 

  • Comparatore VM, Cid MS, Busch C (1995) Dietary preferences of two sympatric subterranean rodent populations in Argentina. Rev Chil Hist Nat 68:197–206

    Google Scholar 

  • Du Toit JT, Jarvis JUM, Louw GN (1985) Nutrition and burrowing energetics of the Cape mole-rat Georychus capensis. Oecologia 66:81–87

    Article  Google Scholar 

  • Gabet EJ (2000) Gopher bioturbation: field evidence for nonlinear hillslope diffusion. Earth Surf Process Landf 25:1419–1428

    Article  Google Scholar 

  • Heth G (1989) Burrow patterns of the mole rat Spalax ehrenbergi in two soil types (terra-rossa and redzina) in Mount Carmel. Isr J Zool 217:39–56

    Google Scholar 

  • Hood G (2001) Pop Tools, add-in macro. http://www.cse.csiro.au/poptools/

  • Kimchi T, Terkel J (2003) Mole rats (Spalax ehrenbergi) select bypass burrowing strategies in accordance with obstacle size. Naturwissenschaften 90:36–39

    PubMed  CAS  Google Scholar 

  • Lasiewski RC, Acosta AL, Berstein MH (1966) Evaporative water loss in birds. I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability. Comp Biochem Physiol 19:445–457

    Article  Google Scholar 

  • Le Comber SC, Spinks AC, Bennett NC, Jarvis JUM, Faulkes CG (2002) Fractal dimension of African mole-rat burrows. Can J Zool 80:436–441

    Article  Google Scholar 

  • Lovegrove BG (1989) The cost of burrowing by the social mole-rats (Bathyergidae) Cryptomys damarensis and Heterocephalus glaber. The role of soil moisture. Physiol Zool 62:449–469

    Google Scholar 

  • Luna F, Antinuchi CD (2006) Cost of foraging in the subterranean rodent Ctenomys talarum: effect of soil hardness. Can J Zool 84:661–667

    Article  Google Scholar 

  • Luna F, Antinuchi CD, Busch C (2002) Digging energetics in the South American rodent, Ctenomys talarum (Rodentia, Ctenomyidae). Can J Zool 80:2144–2149

    Article  Google Scholar 

  • Malizia AI, Kittlein MJ, Busch C (2000) Influence of the subterranean herbivorous rodent Ctenomys talarum on vegetation and soil. Z Säugetierkd 65:172–182

    Google Scholar 

  • Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression, and global convergence. Oxford University Press, New York

    Google Scholar 

  • Pearson OP (1959) Biology of the subterranean rodents, Ctenomys, in Peru. Mem Mus Hist Nat “Javier Prado” 9:1–56

    Google Scholar 

  • Reichman OJ, Aitchison S (1981) mammal trails on mountain slopes: optimal paths in relation to slope angle and body weight. Am Nat 117:416–420

    Article  Google Scholar 

  • Reig OA, Busch C, Ortellis MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular level. Alan R Liss, New York, pp 71–96

    Google Scholar 

  • Romañach SS, Le Comber SC (2004) Measures of pocket gopher (Thomomys bottae) burrow geometry: correlates of fractal dimension. J Zool 262:399–403

    Article  Google Scholar 

  • Rosi MI, Puig S, Videla F, Madoery L, Roig VG (1996) Estudio ecológico del roedor subterráneo Ctenomys mendocinus en la precordillera de Mendoza, Argentina: ciclo reproductivo y estructura etaria. Rev Chil Hist Nat 65:221–223

    Google Scholar 

  • Schmidt-Nielsen K (1972) Locomotion: energy cost of swimming, flying, and running. Science 177:222–228

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1990) Animal physiology: adaptation and environment. Cambridge University Press, Cambridge

    Google Scholar 

  • Seabloom EW, Reichman OJ, Gabet EJ (2000) The effect of hillslope angle on pocket gopher (Thomomys bottae) burrow geometry. Oecologia 125:26–34

    Article  Google Scholar 

  • Seymour RS, Withers PC, Weathers WW (1998) Energetics of burrowing, running, and free-living in the Namib Desert golden mole (Eremitalpa namibensis). J Zool 244:107–117

    Article  Google Scholar 

  • Sumbera R, Burda H, Chitaukali WN, Kudova J (2003) Silvery mole-rats (Heliophobius argenteocinereus, Bathyergidae) change their burrow architecture seasonally. Naturwissenschaften 90:370–373

    Article  PubMed  CAS  Google Scholar 

  • Taylor CR, Schmidt-Nielsen K, Raab JL (1970) Scaling of the energetic cost of running to body size in mammals. Am J Physiol 219:1104–1107

    PubMed  CAS  Google Scholar 

  • Taylor CR, Caldwell SL, Rowntree VJ (1972) Running up and down hills: some consequences of size. Science 178:1096–1097

    Article  PubMed  CAS  Google Scholar 

  • Vleck D (1979) The energy cost of burrowing by the pocket gopher Thomomys bottae. Physiol Zool 52:122–135

    Google Scholar 

  • Vleck D (1981) Burrow structure and foraging cost in the fossorial rodent, Thomomys bottae. Oecologia 49:391–396

    Article  Google Scholar 

  • White CR (2005) The allometry of burrow geometry. J Zool 265:395–403

    Article  Google Scholar 

  • Williams LR, Cameron GN (1990) Dynamics of burrow Attwater’s pocket gopher (Geomys attwateri). J Mammal 71:433–438

    Article  Google Scholar 

  • Withers PC (1977) Measurements of VO2, VCO2, and evaporative water loss with a flow through a mask. J Appl Physiol 42:120–123

    PubMed  CAS  Google Scholar 

  • Woods CA (1984) Hystricognath rodents. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. Wiley, New York, pp 389–446

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

Download references

Acknowledgements

We thank all members of Laboratorio Ecofisiología, especially AP Cutrera, for helping us with animal’s husbandry and for comments on an earlier version of this manuscript. We also thank the anonymous reviewers and CE Schleich for their comments and suggestions. This study was supported by grants from the Universidad Nacional de Mar Del Plata, Agencia Nacional de Promoción Científica y Tecnológica, and Consejo de Investigaciones Científicas y Técnicas (PIP 5670 to CDA). The experiments carried out in this work complied with the current laws of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Luna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, F., Antinuchi, C.D. Effect of tunnel inclination on digging energetics in the tuco-tuco, Ctenomys talarum (Rodentia: Ctenomyidae). Naturwissenschaften 94, 100–106 (2007). https://doi.org/10.1007/s00114-006-0171-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0171-5

Keywords

Navigation