Skip to main content

Advertisement

Log in

The parasite connection in ecosystems and macroevolution

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

In addition to their obvious negative effects (“pathogens”), endoparasites of various kinds play an important role in shaping and maintaining modern animal communities. In the long-term, parasites including pathogens are indispensable entities of any ecosystem. To understand this, it is essential that one changes the viewpoint from the host’s interests to that of the parasite. Together with geographic isolation, trophic arms race, symbiosis, and niche partitioning, all parasites (including balance strategists, i.e. seemingly non-pathogenic ones) modulate their hosts’ population densities. In addition, heteroxenic parasites control the balance between predator and prey species, particularly if final and intermediate hosts are vertebrates. Thereby, such parasites enhance the bonds in ecosystems and help maintain the status quo. As the links between eukaryotic parasites and their hosts are less flexible than trophic connections, parasite networks probably contributed to the observed stasis and incumbency of ecosystems over geologic time, in spite of continuous Darwinian innovation. Because heteroxenic parasites target taxonomic levels above that of the species (e.g. families), these taxa may have also become units of selection in global catastrophies. Macroevolutionary extrapolations, however, are difficult to verify because endoparasites cannot fossilize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akao SA (1970) A new species of Sarcoxstis parasitic in the whale Balaenoptera borealis. J Protozool 17:209–294

    Google Scholar 

  • Anderson RM, May RM (1986) The invasion, persistence and spread of infection diseases within animal and plant communities. Philosophical Transactions of the Royal Society of London Series B 314:533–570

    Article  PubMed  CAS  Google Scholar 

  • Barnard CJ, Behnke M (1990) Parasitism and host behaviour. Taylor and Francis, London

    Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  PubMed  CAS  Google Scholar 

  • Becker W (1977) Der Einfluss von Hunger und Infektion mit Schistosoma mansoni auf den Ketonkörpergehalt der Hämolymphe von Biomphalaria glabrata. Ztschr Parasitenkd 53:109–113

    Article  CAS  Google Scholar 

  • Blewett DA, Watson WA (1984) The epidemiology of ovine toxoplasmosis. III. Observation on outbreaks of clinical toxoplasmosis in relation to possible mechanisms of transmission. Br Vet J 140:54–63

    PubMed  CAS  Google Scholar 

  • Boots M, Sasaki A (2002) Parasite-driven extinction in spatially explicit host–parasite systems. Am Nat 159:706–713

    Article  PubMed  Google Scholar 

  • Boucot AJ (1990) Evolutionary paleobiology of behavior and coevolution. Elsevier, London

    Google Scholar 

  • Bowers RG, Boots M, Begon M (1994) Life-history trade-offs and the evolution of pathogen resistance: competition between host strains. Proc R Soc Lond B Biol Sci 257:247–253

    Article  CAS  Google Scholar 

  • Brett CE, Baird GC (1995) Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In: Erwin HE, Anstey RL (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 285–315

    Google Scholar 

  • Cleaveland S, Thirgood S, Laurenson K (1999) Pathogens as allies in island conservation. Trends Ecol Evol 14:83–84

    Article  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species-facsimile of the first edition. Harvard University Press, Cambridge MA 1964, p 512

    Google Scholar 

  • Daszak P, Cunningham AA (1999) Extinction by infection. Trends Ecol Evol 14:279

    Article  PubMed  Google Scholar 

  • Dönges J (1972) Double infection experiments with echinostomatids (Trematoda) in Lymnaea stagnalis by implantation of rediae and exposure to miracidia. Int J Parasitol 2:409–423

    Article  PubMed  Google Scholar 

  • Dönges J, Götzelmann M (1988) Digenetic trematodes: multiplication of the intramolluscan stages in some species is potentially unlimited. J Parasitol 74:884–885

    Article  PubMed  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper and Co, San Francisco, pp 82–115

    Google Scholar 

  • Emiliani C (1993) Extinction by viruses. Biosystems 31:155–159

    Article  PubMed  CAS  Google Scholar 

  • Fedonkin MA (2003) The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontol Res 7:9–41

    Article  Google Scholar 

  • Flegr J et al (2002) Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect Dis 2:11, Epub 2002 Jul 02

    Article  PubMed  Google Scholar 

  • Flegr et al (2003) Decreased level of psychobiological novelty seeking and lower intelligence in man infected with the protozoan parasite Toxoplasma gondii. Dopamine, a missing link between schizophrenia and toxoplasmosis? Biol Psychol 63:253–268

    Article  PubMed  Google Scholar 

  • Fraser NC, Sues H-D (1992) In the shadow of the dinosaurs. University Press, Cambridge

    Google Scholar 

  • Futuyma DJ (1997) Evolutionary biology. Sinauer Associates Inc Publ, Sunderland, Massachusetts

    Google Scholar 

  • Gehling JG, Rigby JK (1996) Long expected sponges from the Neoproterozoic ediacara fauna of South Australia. J Paleontol 70:185–195

    Google Scholar 

  • Gorthner A (1992) Bau, Funktion und Evolution komplexer Gastropodenschalen in Langzeit-Seen. Stuttg Beitr Naturkd B 190: 173 S, 10 Taf, 56 Abb, 27 Tab. Mit einem Beitrag zur Paläobiologie von Gyraulusmultiformis” im Steinheimer Becken

  • Gould SJ (2002) The pattern of evolution. Belknap Press at Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Gould SJ, Calloway CB (1980) Clams and brachiopods—ships that pass in the night. Paleobiology 6:383–396

    Google Scholar 

  • Haas W, Haberl B, Kalbe M, Körner M (1995) Snail-host-finding by miracidia and cercariae: chemical host clues. Parasitol Today 11:468–472

    Article  Google Scholar 

  • Haas W (2003) Parasitic worms: strategies of host finding, recognition and invasion. Zoology 100:349–364

    Article  Google Scholar 

  • Harzhauser M, Piller WE (2005) Benchmark data of a changing sea. Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol (in press)

  • Havlicek J et al (2001) Decrease of psychomotor performance in subjects with latent “asymptomatic” toxoplasmosis. Parasitology 122(Pt 5):515–520

    Article  PubMed  CAS  Google Scholar 

  • Hilgendorf F (1866) Über Planorbis multiformis im Steinheimer Süßwasserkalk. Monatsber K Preuss Akad Wiss Berlin 1866:474–504

    Google Scholar 

  • Jablonski D, Sepkoski JJ Jr (1996) Palaeobiology, community ecology, and scales of ecological pattern. Ecology 77:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Jablonski D (2002) Survival without recovery after mass extinctions. Proc Nat Acad Sci U S A 99:8139–8144

    Article  CAS  Google Scholar 

  • Jackson MH, Hutchinson WM (1989) The prevalence and source of Toxoplasma infection in the environment. Adv Parasitol 28:55–105

    PubMed  CAS  Google Scholar 

  • Jacobs L (1973) New knowledge of Toxoplasma and toxoplasmosis. Adv Parasitol 11:631–660

    Article  PubMed  CAS  Google Scholar 

  • Kennedy TA et al (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  PubMed  CAS  Google Scholar 

  • Klug C, Schatz W, Korn D, Reisdorf AG (2005) Morphological fluctuations in ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin—indicators of their ecology, extinction, and immigrations. Palaeogeogr Palaeoclimatol Palaeoecol 221:7–34

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community patterns. Science 288:852–854

    Article  PubMed  CAS  Google Scholar 

  • Levinton (2001) Genetics, palaeontology and macroevolution. Cambridge University Press

  • Martin LD, Meehan TJ (2005) Extinction may not be forever. Naturwissenchaften 92:1–19

    Article  CAS  Google Scholar 

  • McMenamin MAS (1986) The garden of ediacara. Palaios 1:178–182

    Google Scholar 

  • Miller W (in press) Assembly of large ecologic systems: macroevolutionary connections. N Jb Geol Paläont

  • Mills G, Harvey M (2001) African predators. Struik Publ, Cape Town

    Google Scholar 

  • Møller AP (2005) Parasitism and the regulation of host populations. In: Thomas F, Renaud F, Guégan J-F (eds) Parasitism and ecosystems. Oxford University Press, Oxford

    Google Scholar 

  • Møller AP, Erritzoe J (2000) Predation against birds with low immune competence. Oecologia 122:500–504

    Article  Google Scholar 

  • Møller AP, Erritzoe J (2002) Coevolution of host immune defence and parasite-mediated mortality: relative spleen size and mortality in altricial birds. Öikos 99:95–100

    Google Scholar 

  • Møller AP, Erritzoe J (2003) Climate, body condition and spleen size in birds. Oecologia 442:621–626

    Article  Google Scholar 

  • Møller AP, Marzal A, Navarro C, de Lope F (2004) Predation risk, host immune response and parasitism. Behav Ecol (in press)

  • Moore J (2002) Parasites and the behaviour of animals. Oxford University Press, Oxford

    Google Scholar 

  • Narbonne et al (2005) The ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33:421–442

    Article  CAS  Google Scholar 

  • Nowak RM (1999) Walker’s mammals of the world, vol 1. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Nützel A, Bandel K (1993) Studies on the side-branch planorbids (Mollusca, Gastropoda) of the Miocene crater lake of Steinheim am Albuch (southern Germany). Scr Geol Spec Issues 2:313–357

    Google Scholar 

  • Odening K (1998) The present state of species-systematics in Sarcocystis Lankester, 1882 (Protista, Sporozoa, Coccidia). Syst Parasitol 41:209–233

    Article  Google Scholar 

  • Packer C, Hillborn R, Mosser A, Kissiu B, Borner M, Hopcraft G, Wilmshurst J, Mduma S, Sinclair ARE (2005) Ecological change, group territoriality, and population dynamics in Serengeti lions. Science 307:390–393

    Article  PubMed  CAS  Google Scholar 

  • Piekarski G, Zippelius H-M, Witting P-A (1978) Auswirkungen einer latenten Toxoplasma-Infektion auf das Lernvermögen von weißen Laboratoriumsratten und -mäusen. Ztschr Parasitenkd 157:1–15

    Google Scholar 

  • Pimentel D, Belotti AC (1976) Parasite–host population systems and genetic stability. Am Nat 110:877–888

    Article  Google Scholar 

  • Powell GDE (1993) The main branch of Miocene Gyraulus (Gastropoda; Planorbidae) of Steinheim (southern Germany): a reconsideration of Mensink’s data set. Scr Geol Spec Issues 2:371–386

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Reif W-E (1985) Endemic evolution of Gyraulus kleini in the meteorite crater of Steinheim. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Springer, Berlin Heidelberg New York, pp 256–294

    Google Scholar 

  • Sax DF, Stachowicz JJ, Gaines SD (2005) Species invasion, insights in ecology, evolution and biogeography. Sinauer, Sunderland MA

    Google Scholar 

  • Schliewen UK, Tautz D, Pääbo S (1994) Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:629–632

    Article  PubMed  CAS  Google Scholar 

  • Schwanbek A, Becker W, Rupprecht H (1986) Quantification of parasite development in the host–parasite system Biomphalaria glabrata and Schistosoma mansoni. Ztschr Parasitenkd 72:365–373

    Article  CAS  Google Scholar 

  • Seilacher A (1990) Aberrations in bivalve evolution related to photo- and chemosymbiosis. Hist Biol 3:289–311

    Article  Google Scholar 

  • Seilacher A (1998) Patterns of macroevolution: how to be prepared for extinction. C R Acad Sci Sci Terre Planetes 327:431–440

    Google Scholar 

  • Seilacher A, Grazhdankin D, Leguta A (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7:43–54

    Article  Google Scholar 

  • Skelton P (1993) Evolution. A biological and paleontological approach. Addison-Wesley Publ Co

  • Stachowitz JJ et al (1999) Species diversity and invasion resistance in a marine ecosystem. Science 286:1577–1579

    Article  Google Scholar 

  • Sukhdeo MVK, Hernandez AD (2005) Food web patterns and the parasite’s perspective. In: Thomas F, Renaud F, Guégan J-F (eds) Parasitism and ecosystems. Oxford University Press, Oxford, pp 54–67

    Google Scholar 

  • Thompson JN (2006) Mutualistic webs of species. Science 312:372–373

    Article  PubMed  CAS  Google Scholar 

  • Tadros W, Laarman JJ (1982) Current concepts on the biology, evolution, and taxonomy of tissue cyst-forming eimeriid coccidia. Adv Parasitol 20:293–468

    PubMed  CAS  Google Scholar 

  • Temple SA (1986) Do predators always capture substandard individuals disproportionately from prey population? Ecology 68:669–674

    Article  Google Scholar 

  • Tenter AM (1995) Current research on Sarcocystis species of domestic animals. Int J Parasitol 25:1311–1330

    Article  PubMed  CAS  Google Scholar 

  • Tenter AM, Johnson AM (1997) Phylogeny of the tissue cyst-forming coccidia. Adv Parasitol 39:69–139

    PubMed  CAS  Google Scholar 

  • Thewissen JGM, Williams EM (2002) The early radiations of Cetacea (Mammalia): evolution pattern and developmental correlations. Ann Rev Ecolog Syst 33:73–90

    Article  Google Scholar 

  • Thomas F, Bonsall MB, Dobson AP (2005) Parasitism, biodiversity, and conservation. In: Thomas F, Renaud F, Guégan J-F (eds) Parasitism and ecosystems. Oxford University Press, pp 124–139

  • Toft CA (1986) Communities of parasites with parasitic life-styles. In: Diamond JM, Case TJ (eds) Community ecology. Harper & Row, New York

    Google Scholar 

  • van der Knaap WPW, Loker ES (1990) Immune-mechanisms in trematode–snail interactions. Parasitol Today 6:175–182

    Article  PubMed  Google Scholar 

  • Verheyen E, Salzburger W, Snoeks J, Meyer A (2003) Origin of the superflock of cichlid fishes from Lake Victoria, East Africa. Science 300:325–329

    Article  PubMed  CAS  Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation. Princeton University Press, Princeton

    Google Scholar 

  • Vrba ES (1985) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236

    Google Scholar 

  • Wallace GD (1971) Experimental transmission of Toxoplasma gondii by filth flies. Am J Trop Med Hyg 20:411–413

    PubMed  CAS  Google Scholar 

  • Wallace GD (1972) Experimental transmission of Toxoplasma gondii by cockroaches J Infect Dis 126:545–547

    PubMed  CAS  Google Scholar 

  • Wallace GD (1973) Intermediate and transport hosts in the natural history of Toxoplasma gondii. Am J Trop Med Hyg 22:456–464

    PubMed  CAS  Google Scholar 

  • Webster JP, Brunton CFA, Macdonald DW (1994) Effect of Toxoplasma gondii upon neophobic behaviour in wild brown rats Rattus norwegicus. Parasitology 109:37–45

    Article  PubMed  Google Scholar 

  • Wenger R (1957) Die Ceratiten der germanischen Trias. Palaeontographica A 108:57–128

    Google Scholar 

  • Wenk P, Renz A (2003) Parasitologie. Biologie der Humanparasiten. Thieme Stuttgart New York (engl. summaries: http://www.vektorbiology.uni-tuebingen.de)

  • Werner H (1980) Latent Toxoplasma infection as a possible risk factor for CNS disorders. Zentralbl Bakteriol Mikrobiol Hyg. 1 Abt Ref Med Mikrobiol Parasitol Hyg PraÉv Med 267:294–295

    Google Scholar 

  • Willmann R (1981) Evolution, Systematik und stratigraphische Bedeutung der neogenen Süßwassergastropoden von Rhodos und Kos/Ägäis. Palaeontographica A 174:10–235

    Google Scholar 

  • Wilson AB, Glaubrecht M, Meyer A (2004) Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganjika. Proc R Soc Lond B 271:529–536

    Article  Google Scholar 

  • Witting P-A (1979) Learning capacity and memory of normal and Toxoplasma-infected laboratory rats and mice. Ztschr Parasitenkd 61:29–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This paper grew out of weekly meetings between the three “retired” authors in the Karolinenstift, Tuebingen, to which W.R. was confined for several years. We thank Christian Klug for letting us use his rendition of the ceratite evolution. Leo Hickey and Greg Dietl (Yale University) and two rounds of reviewers (T.J. Meehan, others anonymous) for critically reading an earlier version. Daniel Wenk digitalized the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolf Seilacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seilacher, A., Reif, WE. & Wenk, P. The parasite connection in ecosystems and macroevolution. Naturwissenschaften 94, 155–169 (2007). https://doi.org/10.1007/s00114-006-0164-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0164-4

Keywords

Navigation