Skip to main content

Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data

Abstract

Previous studies have identified the tropopause height (TH) as a promising fingerprint of climatic change. In the present paper, we report variations in TH for the Eurasian region over the period 1973–1998 and analyse the influence of the Northern Annular Mode (NAM) on these variations. As previous studies indicate that the greatest increases in TH occur in the extratropics, we focused our attention on this area. We applied a set of homogenization procedures to radiosonde data and considered three different scenarios that take into account change points and the main volcanic eruptions over the study period. Our results demonstrate that the number of stations with positive TH trends is very sensitive to the quality of data and the methods used to remove inhomogeneities. Consequently, when change points were included in the analysis, the number of stations with positive trends decreased markedly. Furthermore, stratospheric NAM appears to control TH in stations located at latitudes higher than 55°N.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Ambaum MHP, Hoskins BJ (2002) The NAO troposphere–stratosphere connection. J Climate 15:1969–1978

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584

    CAS  Article  PubMed  Google Scholar 

  • de la Torre L, Gimeno L, Añel JA, Nieto R (2006) Study of troposphere–stratosphere coupling through the Northern Annular Mode. J Atmos Sol-Terr Phys 68:989–998 DOI 10.1016/j.jastp.2005.12.003

    Article  Google Scholar 

  • Eskridge RE, Alduchov OA, Chernykh IV, Panmao Z, Polansky AC, Doty SR (1995) A Comprehensive Aerological Reference Data Set (CARDS): rough and systematic errors. Bull Am Meteorol Soc 76:1759–1775

    Article  Google Scholar 

  • Gibson JK, Kållberg P, Uppala S, Hernandez A, Nomura A, Serrano E (1997) ERA description. ECMWF Re-anal. Proj. Rep. Ser. 1, Eur. Cent. for Medium-Range Weather Forecast, Reading, England

  • Highwood EJ, Hoskins BJ, Berrisford P (2000) Properties of the arctic tropopause. Q J R Meteorol Soc 126:1515–1532

    Article  Google Scholar 

  • Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679

    CAS  Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Lanzante JR (1996) Resistant, robust and nonparametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol 16:1197–1226

    Article  Google Scholar 

  • Lanzante JR (1998) Correction to “Resistant, robust and nonparametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data.” Int J Climatol 18:235

    Google Scholar 

  • Lanzante JR, Klein SA, Seidel DJ (2003a) Temporal homogenization of monthly radiosonde temperature data. Part I. Methodology. J Climate 16:224–240

    Article  Google Scholar 

  • Lanzante JR, Klein SA, Seidel DJ (2003b) Temporal homogenization of monthly radiosonde temperature data. Part II. Trends, sensitivities, and MSU comparison. J Climate 16:241–262

    Article  Google Scholar 

  • Parker DE, Cox DI (1995) Towards a consistent global climatological rawinsonde data-base. Int J Climatol 15:473–496

    Google Scholar 

  • Ramaswamy V, Schwarzkopf MD, Randel WJ (1996) Fingerprint of ozone depletion in the spatial and temporal pattern of recent lower-stratospheric cooling. Nature 382:616–618

    CAS  Article  Google Scholar 

  • Ramaswamy V, Chanin ML, Angell J, Barnett J, Gaffen D, Gelman M, Keckhut P, Koshelkov Y, Labitzke K, Lin JJR, O’Neill A, Nash J, Randel W, Rood R, Shine K, Shiotani M, Swinbank R (2001) Stratospheric temperature trends: observations and model simulations. Rev Geophys 39:71–122

    Article  Google Scholar 

  • Randel WJ, Wu F, Gaffen DJ (2000) Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalysis. J Geophys Res 105:15509–15524

    Article  Google Scholar 

  • Santer BD, Sausen R, Wigley TML, Boyle JS, AchutaRao K, Doutriaux C, Hansen JE, Meehl GA, Roeckner E, Ruedy R, Schmidt G, Taylor KE (2003a) Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: decadal changes. J Geophys Res 108:4002. DOI 10.1029/2002JD002258

    Article  Google Scholar 

  • Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Brüggemann W (2003b) Contributions of anthropogenic and natural forcing to recent tropopause height changes. Science 301:479–483

    CAS  Article  PubMed  Google Scholar 

  • Santer BD, Wigley TML, Simmons AJ, Kållberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Bruggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104. DOI 10.1029/2004JD005075

    Article  Google Scholar 

  • Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12:131–136

    Article  Google Scholar 

  • Seidel DJ, Lanzante JR (2004) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J Geophys Res 109:D14108. DOI 10.1029/2003J;D004414

    Article  Google Scholar 

  • Seidel DJ, Ross RJ, Angell JK, Reid GC (2001) Climatological characteristics of the tropical tropopause as revealed by radiosondes. J Geophys Res 106:7857–7878

    Article  Google Scholar 

  • Tett SFB, Mitchell JFB, Parker DE, Allen MR (1996) Human influence on the atmospheric vertical temperature structure: detection and observations. Science 274:1170–1173

    CAS  Article  PubMed  Google Scholar 

  • Wallis TWR (1998) A subset of core stations from the Comprehensive Aerological Reference Dataset (CARDS). J Climate 11:272–282

    Article  Google Scholar 

  • WMO (1957) Meteorology. A three-dimensional science. Second session of the commission for aerology. WMO Bull 4(4):134–138

    Google Scholar 

Download references

Acknowledgements

We would like to thank John R. Lanzante for his collaboration in performing the homogenization procedures. We also thank David Parker, Dian J. Seidel, Imke Durre and Benjamin D. Santer for their helpful comments. Finally, we would like to acknowledge the assistance of José M. Castanheira. This work has been founded by the Spanish Science Ministry through TROJET project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Añel.

Electronic supplementary materials

Supplementary Fig. S1

Thickness for the 50–100 hPa layer computed from NCEP/NCAR reanalysis for the period 1973–1998 (JPEG 468 kb)

Supplementary Fig. S2

Thickness for the 400–1000 hPa layer computed from NCEP/NCAR reanalysis for the period 1973–1998 (JPEG 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Añel, J.A., Gimeno, L., de la Torre, L. et al. Changes in tropopause height for the Eurasian region determined from CARDS radiosonde data. Naturwissenschaften 93, 603–609 (2006). https://doi.org/10.1007/s00114-006-0147-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0147-5

Keywords

  • Tropopause
  • Radiosonde data
  • Parallel climate model