Skip to main content

Advertisement

Log in

The asteroid and comet impact hazard: risk assessment and mitigation options

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The impact of extraterrestrial matter onto Earth is a continuous process. On average, some 50,000 tons of dust are delivered to our planet every year. While objects smaller than about 30 m mainly disintegrate in the Earth’s atmosphere, larger ones can penetrate through it and cause damage on the ground. When an object of hundreds of meters in diameter impacts an ocean, a tsunami is created that can devastate coastal cities. Further, if a km-sized object hit the Earth it would cause a global catastrophe due to the transport of enormous amounts of dust and vapour into the atmosphere resulting in a change in the Earth’s climate. This article gives an overview of the near-Earth asteroid and comet (near-Earth object-NEO) impact hazard and the NEO search programmes which are gathering important data on these objects. It also points out options for impact hazard mitigation by using deflection systems. It further discusses the critical constraints for NEO deflection strategies and systems as well as mitigation and evacuation costs and benefits. Recommendations are given for future activities to solve the NEO impact hazard problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrens TJ, Harris AW (1992) Deflection and Fragmentation of Near-Earth Asteroids. Nature 360:429–433

    Article  Google Scholar 

  • Asphaug E, Ostro SJ, Hudson RS, Scheeres DJ, Benz W (1998) Disruption of kilometre-sized asteroids by energetic collisions. Nature 393:437–440

    Article  CAS  Google Scholar 

  • Belton M, Morgan T, Samarasinha N, Yeomans D (eds.) (2004) Mitigation of hazardous comets and asteroids. Cambridge University Press, Cambridge

  • Bottke WF et al (eds.) (2002a) Asteroids III, University of Arizona Press, Tucson

    Google Scholar 

  • Bottke WF, Morbidelli A, Jedicke R, Petit J-M, Levison H, Michel P, Metcalfe TS (2002b), Debiased Orbital and Size Distribution of the Near-Earth Objects. Icarus 156:399–433

    Article  Google Scholar 

  • Canavan GH (1995) Cost and Benefit of Near-Earth Object Defences, Proceedings of the Planetary Defence Workshop, Lawrence Livermore National Laboratories. CONF-9505266:273–298

  • Carusi A (ed.) (1995) Vulcano Workshop: Beginning the Spaceguard Survey, IAU Working Group on Near-Earth Objects, Vulcano Workshop, Italy, September 18–22

  • Conway B (2004) Optimal interception and deflection of Earth-approaching asteroids using low-thrust electric propulsion, in: Belton M, Morgan T, Samarasinha N, Yeomans D (eds), Mitigation of hazardous comets and asteroids. Cambridge University Press, pp 292–312

  • Crawford DA (1997) Comet shoemaker-levy 9 fragment size estimation: how big was the parent body?, near-earth objects-the united nations international conference, annals of the New York. Acad Sci 822:155–173

    Article  Google Scholar 

  • Dürfeld K (2002) Analyse von Kosten zur Vermeidung von Asteroiden- und Kometeneinschlägen, Diploma Thesis, Technische Universitaet Dresden, Germany

  • Farinella P et al (2001) Probable Asteroidal Origin of the Tunguska Cosmic Body. Astron Astrophys 377:1081–1097

    Article  Google Scholar 

  • Festou M et al (eds.) (2004) Comets II, University of Arizona Press, Tucson

    Google Scholar 

  • Gehrels T (1996) NEO Search Programs: Past, Present, and Future, AIAA Space Programs and Technologies Conference, AIAA 96–4382, Huntsville

  • Giorgini JD et al (2002) Asteroid 1950 DA’s encounter with earth in 2880: physical limits of collision probability prediction. Science 296:132–136

    Article  PubMed  CAS  Google Scholar 

  • Grady MM (2000) Catalogue of meteorites, Cambridge University Press

  • Gritzner Ch (1996) Analyse alternativer Systeme zur Beeinflussung der Bahn erdnaher Asteroiden und Kometen, Doctoral Thesis, Technische Universität Berlin, DLR-FB 96-26, DLR, Cologne

  • Gritzner Ch (2001) NEO-MIPA–NEO Hazard Mitigation Publication Analysis, study for ESA by EUROSPACE GmbH and Dresden University of Technology, ESA-GSP 00/N94

  • Gritzner Ch, Fasoulas S (2002) Justification of NEO Impact Mitigation Activities by Risk Management, In: Memorie della Societa’ Astronomica Italiana Vol. 73, No. 3

  • Gritzner Ch, Kahle R (2004) Mitigation technologies and their requirements, in: Belton M, Morgan T, Samarasinha N, Yeomans D (eds), Mitigation of hazardous comets and asteroids. Cambridge University Press, pp 167–200

  • Harris AW, Canavan GH, Sagan C, Ostro SJ (1994) The Deflection Dilemma: Use vs. Misuse of Technologies for Avoiding Interplanetary Hazards, in: Gehrels, Tom (ed.), Hazards Due to Comets and Asteroids, University of Arizona Press, Tucson, pp 1145–1156

    Google Scholar 

  • Helin EF, Pravdo SH, Rabinowitz, DL, Lawrence KJ (1997) Near-Earth Asteroid Tracking (NEAT) Program, in: Near-Earth Objects-The United Nations International Conference, Annals of the New York Academy of Sciences 822:6–25

  • Holsapple KA (2002) About deflecting asteroids and comets, in: Belton M, Morgan T, Samarasinha N, Yeomans D (eds.), Mitigation of hazardous comets and asteroids, Cambridge University Press, pp 113–140

  • Huebner WF, Greenberg JM (2001) Adv Space Res 28(8):1129–1137

    Article  Google Scholar 

  • Kahle R (2005) Modelle und Methoden zur Abwendung von Kollisionen von Asteroiden und Kometen mit der Erde, Doctoral Thesis, Technische Universität Berlin

  • Kahle R, Kührt E, Hahn G, Knollenberg J (2006) Physical limits of solar collectors in deflecting Earth-threatening asteroids, Aerospace Science and Technology, Elsevier, 10(3):256–263

    Google Scholar 

  • Kasper J (2004) Bestimmung von Vorwarnzeiten, Einschlags- und Evakuierungsgebieten sowie Evakuierungskosten bei NEO-Impakten, TU Dresden, ILR internal report, ILR-RSN KB-03-05

  • Kirsch S (2000), http://www.kirschfoundation.org/who/ reflection_5.html

  • Lu ET, Love SG (2005) Gravitational tractor for towing asteroids. Nature 438:177–178

    Article  PubMed  CAS  Google Scholar 

  • Melosh HJ, Nemchinov IV (1993) Solar asteroid diversion. Nature 366:21–22

    Article  Google Scholar 

  • Melosh HJ, Nemchinov IV, Zetzer Yu I (1994) Non-nuclear strategies for deflecting comets and asteroids, in Gehrels T (ed.) Hazards Due to Comets and Asteroids, University of Arizona Press, Tucson, pp 1111–1132

    Google Scholar 

  • Morrison DA, Chapman CR, Slovic P (1994) The Impact Hazard, in Gehrels T (ed.) Hazards Due to Comets and Asteroids, The University of Arizona Press. Tucson, pp 59–91

    Google Scholar 

  • Nelson P (2005) Prometheus Spaceship, ANS Annual Meeting, Space Nuclear Conf., San Diego June 5–9

  • Neukum G, Ivanov BA (1994) Crater Size Distributions and Impact Probabilities on Earth from Lunar, Terrestrial-Planet, and Asteroid Cratering Data. In: Gehrels, Tom (ed.), Hazards Due to Comets and Asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Oberst J, Molau S, Heinlein D, Gritzner C, Schindler M, Spurny P, Ceplecha Z, Rendtel J, Betlem H (1998) The “European Fireball Network’’: Current Status and Future Prospects. Meteorit Planet Sci 33:49–56

    Article  CAS  Google Scholar 

  • Ostro SJ (1997) Radar Reconnaissance of Near-Earth Objects at the Dawn of the Next Millennium, in: Near-Earth Objects-The United Nations International Conference. Ann N Y Acad Sci 822:118–139

    Article  Google Scholar 

  • Remo JL, Haubold HJ (2001) NEO scientific and policy developments 1995–2000. Space Policy 17:213–218

    Article  Google Scholar 

  • Schweickart RL (2004) Asteroid Deflection: An International Challenge, World Federation of Scientists’ Multidisciplinary Core Group on Planetary Emergencies, Rome, Italy, 1–2 December

  • Stokes GH et al (2003) Study to determine the feasibility of extending the search for near-Earth objects to smaller limiting diameters, Report of the near-Earth object definition team, Aug. 22 (see internet resources)

  • Stuart SS, Binzel RP (2004), Bias-corrected population, size distribution, and impact hazard for near-Earth objects. Icarus 170:295–311

    Article  Google Scholar 

  • Tagliaferri E, Spalding R, Jacobs C, Worden SP, Erlich A (1994) Detection of Meteoroid Impacts by Optical Sensors in Earth Orbit, in Gehrels T (ed.) Hazards Due to Comets and Asteroids. University of Arizona Press, Tucson, pp 199–220

    Google Scholar 

  • Thomas DJ (2005) The critics return to flight. Aerosp Am 43(8):14–16

    Google Scholar 

  • Toon OB et al (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  CAS  Google Scholar 

  • Tuckness DG, McGaha T (1997) Short response time options for impending asteroid collision. Advances in Astronautical Sciences AAS 97-102:67–74

    Google Scholar 

  • Völker L (2002) Konzeption von Solar-Spiegelsystemen zur Bahnänderung von NEOs, Study Thesis, Technische Universität Dresden. ILR-RSN-G-02-01

  • Ward S, Asphaug E (2000) Asteroid impact tsunami: A probabilistic hazard assessment. Icarus 145:64–78

    Article  Google Scholar 

  • Yau K, Weissman P, Yeomans D (1994) Meteorite falls in China and some related human casualty events. Meteorit Planet Sci 29:864–871

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gritzner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gritzner, C., Dürfeld, K., Kasper, J. et al. The asteroid and comet impact hazard: risk assessment and mitigation options. Naturwissenschaften 93, 361–373 (2006). https://doi.org/10.1007/s00114-006-0115-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-006-0115-0

Keywords

Navigation