, Volume 92, Issue 12, pp 595–598

Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs

  • Otto Gleich
  • Robert J. Dooling
  • Geoffrey A. Manley
Short Communication


The inner ear in the group of archosaurs (birds, crocodilians, and extinct dinosaurs) shows a high degree of structural similarity, enabling predictions of their function in extinct species based on relationships among similar variables in living birds. Behavioral audiograms and morphological data on the length of the auditory sensory epithelium (the basilar papilla) are available for many avian species. By bringing different data sets together, we show that body mass and the size of the basilar papilla are significantly correlated, and the most sensitive frequency in a given species is inversely related to the body mass and the length of the basilar papilla. We also demonstrate that the frequency of best hearing is correlated with the high-frequency limit of hearing. Small species with a short basilar papilla hear higher frequencies compared with larger species with a longer basilar papilla. Based on the regression analysis of two significant correlations in living archosaurs (best audiogram frequency vs body mass and best audiogram frequency vs papillar length), we suggest that hearing in large dinosaurs was restricted to low frequencies with a high-frequency limit below 3 kHz.

Supplementary material

114_2005_50_MOESM1_ESM.pdf (144 kb)
(PDF 148 kb)


  1. 1.
    Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Fay RR, Popper AN (eds) Springer handbook of auditory research: comparative hearing: birds and reptiles. Springer, Berlin Heidelberg, New York pp 308–359Google Scholar
  2. 2.
    Dooling RJ (2002) Avian hearing and the avoidance of wind turbines. National Renewable Energy Laboratory Technical Report, NREL TP-500–30844, 1–84Google Scholar
  3. 3.
    Dominguez-Alonso P, Milner AC, Ketcham RA, Cookson MJ, Rowe TB (2004) The avian nature of the brain and inner ear of Archaeopteryx. Nature 430:666–669CrossRefPubMedGoogle Scholar
  4. 4.
    Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka ILGoogle Scholar
  5. 5.
    Feduccia A (1980) The age of birds. Harvard University Press, CambridgeGoogle Scholar
  6. 6.
    Fischer FP, Köppl C, Manley GA (1988) The basilar papilla of the barn owl Tyto alba: a quantitative morphological SEM analysis. Hear Res 34:87–102CrossRefPubMedGoogle Scholar
  7. 7.
    Gleich O, Manley GA (1988) Quantitative morphological analysis of the sensory epithelium of the starling and pigeon basilar papilla. Hear Res 34:69–86CrossRefPubMedGoogle Scholar
  8. 8.
    Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. In: Dooling RJ, Fay RR, Popper AN (eds) Springer handbook of auditory research: comparative hearing: birds and reptiles. Springer, Berlin Heidelberg New York pp 70–138Google Scholar
  9. 9.
    Gleich O, Fischer FP, Köppl C, Manley GA (2004) Hearing organ evolution and specialization: archosaurs. In: Manley GA, Popper AN, Fay RR (eds) Springer handbook of auditory research: evolution of the vertebrate auditory system. Springer, Berlin Heidelberg New York, pp 225–260Google Scholar
  10. 10.
    Gray AA (1908) The labyrinth of animals including mammals, birds, reptiles and amphibians, vol II. J&A Churchill, LondonGoogle Scholar
  11. 11.
    Gunga H-C, Kirsch KA, Baartz F, Röcker L, Heinrich W-D, Lisowski W, Wiedemann A, Albertz J (1995) New data on the dimensions of Brachiosaurus brancai and their physiological implications. Naturwissenschaften 82:190–192Google Scholar
  12. 12.
    Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) Springer handbook of auditory research: the mammalian auditory pathway: neurophysiology. Springer, Berlin Heidelberg New York, pp 153–231Google Scholar
  13. 13.
    Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704CrossRefGoogle Scholar
  14. 14.
    Konishi M (1993) Neuroethology of sound localization in the owl. J Comp Physiol A 173:3–7CrossRefGoogle Scholar
  15. 15.
    Manley GA (1990) Peripheral hearing mechanisms in reptiles and birds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. 16.
    Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230:506–509CrossRefPubMedGoogle Scholar
  17. 17.
    Manley GA, Köppl C, Yates GK (1997) Activity of primary auditory neurons in the cochlear ganglion of the emu Dromaius novaehollandiae: spontaneous discharge, frequency tuning, and phase locking. J Acoust Soc Am 101:1560–1573CrossRefPubMedGoogle Scholar
  18. 18.
    Olsen SL (1985) The fossil record of birds. In: Farner D, King J, Parkes K (eds) Avian biology, vol 8. Academic, New York pp 79–238Google Scholar
  19. 19.
    Rogers SW (1998) Exploring dinosaur neuropalaeobiology: computed tomography scanning analysis of an Allosaurus fragilis endocasts. Neuron 21:673–679CrossRefPubMedGoogle Scholar
  20. 20.
    Schermuly L, Klinke R (1985) Change of characteristic frequencies of pigeon primary auditory afferents with temperature. J Comp Physiol A 156:209–211CrossRefGoogle Scholar
  21. 21.
    Seebacher F, Grigg GC, Beard LA (1999) Crocodiles as dinosaurs: behavioural thermoregulation in very large ectotherms leads to high and stable body temperatures. J Exp Biol 202:77–86PubMedGoogle Scholar
  22. 22.
    Smolders JWT, Klinke R (1984) Effects of temperature on properties of primary auditory fibres of the spectacled caiman Caiman crocodilus (L.). J Comp Physiol A 155:19–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Otto Gleich
    • 1
  • Robert J. Dooling
    • 2
  • Geoffrey A. Manley
    • 3
  1. 1.ENT DepartmentUniversity of RegensburgRegensburgGermany
  2. 2.Department of PsychologyUniversity of MarylandCollege ParkUSA
  3. 3.Lehrstuhl für ZoologieTechnische Universität MünchenGarchingGermany

Personalised recommendations