Skip to main content

Advertisement

Log in

Extinction may not be forever

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Here we review the phenomenon of ecomorph evolution and the hypothesis of iterative climatic cycles. Although a widely known phenomenon, convergent evolution has been underappreciated in both its scope and commonality. The power of natural selection to override genealogy to create similar morphologies (even among distantly related organisms) supports classical Darwinian evolution. That this occurs repeatedly in stratigraphically closely spaced intervals is one of the most striking features of Earth history. Periodic extinctions followed by re-evolution of adaptive types (ecomorphs) are not isolated occurrences but are embedded within complex ecological systems that evolve, become extinct, and repeat themselves in temporal synchrony. These complexes of radiation and extinction bundle the biostratigraphic record and provide the basis for a global stratigraphy. At this scale, climatic change is the only mechanism adequate to explain the observed record of repeating faunas and floras. Understanding of the underlying causes may lead to predictive theories of global biostratigraphy, evolutionary processes, and climatic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A–D
Fig. 3A, B
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733

    Google Scholar 

  • Aubrey M-P (1995) From chronology to stratigraphy: interpreting the lower and middle Eocene stratigraphic record in the Atlantic Ocean. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. SEPM Spec Publ 54:213–274

    Google Scholar 

  • Barendregt RW, Irving E (1998) Changes in the extent of North American ice sheets during the late Cenozoic. Can J Earth Sci 35:504–509

    Article  Google Scholar 

  • Benson RH, Chapman RE, Deck LT (1984) Paleoceanographic events and deep-sea ostracodes. Science 224:1334–1336

    Google Scholar 

  • Benton MJ (1983) Large-scale replacements in the history of life. Nature 302:16–17

    Google Scholar 

  • Benton MJ (1995) Diversity and extinction in the history of life. Science 268:52–58

    CAS  PubMed  Google Scholar 

  • Berggren WA, Kent DV, van Couvering JA (1985) The Neogene; part 2, Neogene geochronology and chronostratigraphy. Mem Geol Soc Lond 10:221–260

    Google Scholar 

  • Berggren WA, Kent DV, Aubry M-P, Hardenbol J, eds (1995) Geochronology, time scales and global stratigraphic correlation. SEPM Spec Publ 54:1–364

    Google Scholar 

  • Bestland EA, Retallack GJ, Swisher CC III (1997) Stepwise climate change recorded in Eocene–Oligocene paleosol sequences from Central Oregon. J Geol 105:153–172

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136

    Article  CAS  PubMed  Google Scholar 

  • Boucot AJ (1975) Evolution and extinction rate controls. Elsevier, Amsterdam

  • Bowring SA, Erwin DH (1998) A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8:1–8

    Google Scholar 

  • Brett CE, Baird GC (1995) Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In: Erwin DH, Anstey RL (eds) New approaches to speciation in the fossil record. Columbia University Press, New York, pp 285–315

  • Busch RM, West RR (1987) Hierarchal genetic stratigraphy: a framework for paleoceanography. Paleoceanography 2:141–164

    Google Scholar 

  • Chiba S (1998) Synchronized evolution in lineages of land snails in oceanic islands. Paleobiology 24:99–108

    Google Scholar 

  • Cifelli R (1969) Radiation of the Cenozoic planktonic Foraminifera. Syst Zool 18:154–168

    Google Scholar 

  • Clark DL, Whitman RR, Morgan KA, Mackey SD (1980) Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Geol Soc Am Spec Pap 181:1–57

    Google Scholar 

  • Clark J, Beerbower JR, Keitzke KK (1967) Oligocene sedimentation, stratigraphy, paleoecology, and paleoclimatology in the Big Badlands of South Dakota. Fieldiana Geol Mem 5:1–158

    Google Scholar 

  • Collinson ME, Fowler K, Boulter MC (1981) Floristic changes indicate a cooling climate in the Eocene of southern England. Nature 291:315–317

    Google Scholar 

  • Crowley TJ, Kim KY (1996) Comparison of proxy records of climate change and solar forcing. Geophys Res Lett 23:359–362

    Article  Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford Monogr Geol Geophys 16:1–339

    Google Scholar 

  • Curry WB, Cullen JL, Backman J (1990) Carbonate accumulation in the Indian Ocean during the Pliocene: evidence for a change in productivity and preservation at about 2.4 Ma. Proc Ocean Drilling Prog Sci Results 115:509–515

    Google Scholar 

  • Dalrymple GB (1979) Critical tables for conversion of K-Ar ages from old to new constants. Geology 7:558–560

    CAS  Google Scholar 

  • Damuth JD, Jablonski D, Harris JA, Potts R, Stucky RK, Sues H-D, Weishampel DB (1992) Taxon-free characterization of animal communities. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial ecosystems through time. University of Chicago Press, Chicago, pp 183–203

  • Davis SJM (1981) The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Paleobiology 7:101–114

    Google Scholar 

  • DeMenocal P, Bloemendal J, King J (1991) A rock-magnetic record of monsoonal dust deposition to the Arabian Sea: evidence for a shift in the mode of deposition at 2.4 Ma. Proc Ocean Drilling Prog Sci Results 117:389–401

    Google Scholar 

  • Diester-Haas L, Robert C, Chamley H (1996) The Eocene–Oligocene preglacial transition in the Atlantic sector of the Southern Ocean (ODP Site 690). Mar Geol 131:123–149

    Article  Google Scholar 

  • DiMichele WA, Phillips TL (1995) The response of hierarchically structured ecosystems to long-term climatic change: a case study using tropical peat swamps of Pennsylvanian age. Studies in heophysics: effects of past global change on life. National Academy Press, Washington, pp 134–155

    Google Scholar 

  • d’Orbigny AD (1849) Cours elamentaire de paleontologie et de geologie stratigraphiques, vol I. Masson, Paris

  • Ehrmann WU, Mackensen A (1992) Sedimentological evidence for the formation of an east Antarctic ice sheet in Eocene/Oligocene time. Palaeogeogr Palaeoclimatol Palaeoecol 93:85–112

    Article  Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated-equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman and Cooper, San Francisco, pp 82–115

  • Evernden JF, Savage DE, Curtis GH, James GT (1964) K-Ar dates and Cenozoic mammalian chronology of North America. Am J Sci 262:145–198

    CAS  Google Scholar 

  • FAUNMAP group (1996) Spatial response of mammals to late Quaternary environmental fluctuations. Science 272:1601–1606

    PubMed  Google Scholar 

  • Fischer AG (1981) Climatic oscillations in the biosphere. In: Nitecki MH (ed) Biotic crises in ecological and evolutionary time. Academic, New York, pp 103–131

  • Flessa KW (1975) Area, continental drift, and mammalian diversity. Paleobiology 1:189–194

    Google Scholar 

  • Flynn LJ, MacFadden BM, McKenna MC (1984) Land-Mammal Ages, faunal heterochrony, and temporal resolution in Cenozoic terrestrial sequences. J Geol 92:687–705

    Google Scholar 

  • Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic. Cambridge University Press, Cambridge

  • Fuji N (1988) Palaeovegetation and palaeoclimate changes around Lake Biwa, Japan during the last ca. 3 million years. Quat Sci Rev 7:21–28

    Article  Google Scholar 

  • Geel B van, van der Plicht J, Renssen H (2003) Major delta-14C excursions during the Late Glacial and early Holocene: changes in ocean ventilation or solar forcing of climate change? Quat Int 105:71–76

    Article  Google Scholar 

  • Geist V (1983) On the evolution of Ice Age mammals and its significance to an understanding of speciations. Walton Distinguished Lecture Series, Mountain Lake Biology Station, 30:109–33

  • Gradstein FM, Ogg JG (2004) Geologic time scale—why, how, and where next! http://www.stratigraphy.org/scale04.pdf

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263:663–665

    Google Scholar 

  • Guthrie RD (1984) Mosaics, allelochemics, and nutrients: an ecological theory of late Pleistocene megafaunal extinctions. In: Martin PS, Klein RG (eds) Quaternary extinctions. University of Arizona Press, Tucson, pp 259–298

  • Hammen T van der (1957) Climatic periodicity and evolution of South American Maastrichtian and Tertiary floras. Bogota Bol Geol 5:49–91

    Google Scholar 

  • Hammen T van der (1961) Upper Cretaceous and Tertiary climatic periodicities and their causes. NY Acad Sci Annu 95:440–448

    Google Scholar 

  • Hammen T van der (1965) Paläoklima, Stratigraphie und Evolution. Geol Rundsch 54:428–441

    Google Scholar 

  • Hammen T van der, Wijmstra TA, Zagwijn W (1971) The floral record of the late Cenozoic of Europe. In: Turekian KK (ed) The late Cenozoic glacial ages. Yale University Press, New Haven, Conn., pp 391–424

  • Harland W, Armstrong BR, Cox A, Craig L, Smith A, Smith D (1989) A geologic time scale. Cambridge University Press, Cambridge

  • Hickey LJ, West RM, Dawson MR, Choi DK (1983) Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the late Cretaceous and early Tertiary. Science 221:1153–1156

    Google Scholar 

  • Holland CH (1989) Synchronology, taxonomy, and reality. Philos Trans R Soc Lond B 325:263–277

    Google Scholar 

  • Hood KC (1989) Geological significance of biomere boundaries. Dissertation,Kansas University, Lawrence

  • Hooghiemstra H, Ran ETH (1994) Late Pliocene–Pleistocene high resolution pollen sequence of Colombia: an overview of climatic change. Quat Int 21:63–80

    Article  Google Scholar 

  • Hulbert CH Jr, Morgan GS (1993) Quantitative and qualitative evolution in the giant armadillo Holmesina (Edentata: Pampatheriidae) in Florida. In: Martin RA, Barnosky AD (eds) Morphological change in Quaternary mammals of North America. Cambridge University Press, Cambridge, pp 134–204

  • Janis CM (1989) A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32:463–481

    Google Scholar 

  • Janis CM, Scott KM, Jacobs LL (eds) (1998) Evolution of Tertiary mammals of North America, vol I. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge

  • Jansen E, Bleil U, Henrich R, Kringstad L, Slettemark B (1988) Paleoenvironmental changes in the Norwegian Sea and the northeast Atlantic during the last 2.8 my: deep-sea drilling project/ocean drilling program sites 610, 642, 643, and 644. Paleoceanography 3:563–581

    Google Scholar 

  • Jenkins DG (1974) Paleogene planktonic foraminifera of New Zealand and the Austral region. J Foraminiferal Res 4:155–170

    Google Scholar 

  • Keller G (1986) Stepwise mass extinctions and impact events: late Eocene to early Oligocene. Marine Micropaleont 10:267–293

    Article  Google Scholar 

  • Kemper E (1987) Das Klima der Kreide-Zeit. Geol Jahrb Reihe A, Hannover, Germany

  • Kennett JP, Barker PF (1990) Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean drilling perspective. Proc Ocean Drilling Prog Sci Results 113:937–960

    Google Scholar 

  • Kennett JP, Shackleton NJ (1976) Oxygen isotope evidence for the development of the psychrosphere 38 Myr ago. Nature 260:513–515

    CAS  Google Scholar 

  • Kerr RA (1996) A new dawn for sun-climate links? Science 271:1360–1361

    CAS  Google Scholar 

  • Koch PL, Zachos JC, Gingerich PD (1992) Correlation between isotope records in marine and continental carbon reservoirs near the Paleocene/Eocene boundary. Nature 358:319–322

    Article  CAS  Google Scholar 

  • Koenigswald W von, Hahn J (1981) Jagdtiere und Jäger der Eiszeit. Theiss, Stuttgart

  • Kohler M, Moya-Sola S, Agusti J (1988) Miocene/Pliocene shift: one step or several? Nature 393:126

    Article  Google Scholar 

  • Krasilov V (1974) Causal biostratigraphy. Lethaia 7:173–179

    Google Scholar 

  • Krasilov V (1987) Periodicity in the development of life. Paleontol J 3:9–15

    Google Scholar 

  • Leidelmeyer P (1966) The Paleocene and lower Eocene pollen flora of Guyana. Leidse Geol Meded 38:49–70

    Google Scholar 

  • Lenski RE, Ofria C, Pennock RT, Adami C (2003) The evolutionary origin of complex features. Nature 423:139–144

    Article  CAS  PubMed  Google Scholar 

  • Lindsay EH (1995) Copemys and the Barstovian/Hemingfordian boundary. J Vert Paleontol 15:357–365

    Google Scholar 

  • Liu TS, An Z, Yuan B, Han J (1985) The loess–paleosol sequence in China and climatic history. Episodes 8:21–28

    Google Scholar 

  • Lucas SG (1992) Redefinition of the Duchesnean land mammal “age,” late Eocene of western North America. In: Prothero DR, Berggren WA (eds) Eocene–Oligocene climatic and biotic evolution. Princeton University Press, Princeton, N.J., pp 88–105

  • Martin LD (1984) Phyletic trends and evolutionary rates. Spec Publ Carnegie Mus Nat Hist 8:526–538

    Google Scholar 

  • Martin LD (1985) Tertiary extinction cycles and the Pliocene–Pleistocene boundary. Inst Tertiary–Quaternary Stud Symp Ser 1:33–40

    Google Scholar 

  • Martin LD (1994) Cenozoic climatic history from a biological perspective. Inst Tertiary–Quaternary Stud Symp Ser 2:39–56

  • Martin LD, Meehan TJ (2002) Recognizing a global stratigraphy. Inst Tertiary–Quaternary Stud Symp Ser 3:175–185

  • Martin LD, Naples VL (2002) Environmental controls for multiple evolutionary events. Inst Tertiary–Quaternary Stud Symp Ser 3:37–52

    Google Scholar 

  • Matthew WD (1939) Climate and evolution. Spec Publ NY Acad Sci 1:1–223

    Google Scholar 

  • McGhee GR Jr (1988) The Late Devonian extinction event: evidence for abrupt ecosystem collapse. Paleobiology 14:250–257

    Google Scholar 

  • Meehan TJ, Martin LD (2003) Extinction and re-evolution of similar adaptive types (ecomorphs) in Cenozoic North American ungulates and carnivores reflect van der Hammen’s cycles. Naturwissenschaften 90:131–135

    CAS  PubMed  Google Scholar 

  • Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the ice house: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res 96:6829–6848

    Google Scholar 

  • Naples VL, Martin LD (1998) Cenozoic brain evolution as a result of global cooling. Institute of Tertiary–Quaternary Studies Symposium Abstracts, Annual Meeting, Lawrence, Kansas, p 4

  • Newell ND (1952) Periodicity in invertebrate evolution. J Paleontol 26:371–385

    Google Scholar 

  • Olson EC (1952) The evolution of a Permian vertebrate chronofauna. Evolution 6:181–196

    Google Scholar 

  • Olson EC (1975) Permo-Carboniferous paleoecology and morphotypic series. Am Zool 15:371–389

    Google Scholar 

  • Palmer AR (1965) Biomere—a new kind of biostratigraphic unit. J Paleontol 39:149–153

    Google Scholar 

  • Palmer AR, Stitt JH, Thomas RC (1995) Biomere boundaries. Northwest Geol 24:67–75

    Google Scholar 

  • Pascual R (1992) Episodes in South American land mammal evolution and sedimentation: discrete responses to the same causes. IGCP Second Meeting Programs and Abstracts, Paleoweathering Records and Paleosurfaces, October 1992, p 21

    Google Scholar 

  • Pascual R, Jaureguizar EO (1990) Evolving climates and mammal faunas in Cenozoic South America. J Hum Evol 19:23–60

    Google Scholar 

  • Patterson RT, Fowler AD (1996) Evidence of self-organization in planktic foraminiferal evolution: implications for interconnectedness of paleoecosystems. Geology 24:215–218

    Article  Google Scholar 

  • Prothero DR (1989) Stepwise extinctions and climatic decline during the later Eocene and Oligocene. In: Donovan SK (ed) Mass extinctions, processes, and evidence. Columbia University Press, New York, pp 217–234

  • Prothero DR (1995) Geochronology and magnetostratigraphy of Paleogene North American land mammal “ages:” an update. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. SEPM Spec Publ 54:305–315

    Google Scholar 

  • Prothero DR (1999) Does climatic change drive mammalian evolution? GSA Today 9:1–5

    Google Scholar 

  • Raup DM, Boyajian GE (1988) Patterns of generic extinction in the fossil record. Paleobiology 14:109–125

    CAS  PubMed  Google Scholar 

  • Retallack GJ (1983) A paleopedological approach to the interpretation of terrestrial sedimentary rocks: the mid-Tertiary fossil soils of Badlands, National Park, South Dakota. Geol Soc Am Bull 94:823–840

    CAS  Google Scholar 

  • Retallack GJ (1984) Completeness of the fossil record: some estimates using fossil soils. Paleobiology 10:59–78

    Google Scholar 

  • Ross CA, Ross JRP (1985) Late Paleozoic depositional sequences are synchronous and worldwide. Geology 13:194–197

    Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176

    Article  CAS  PubMed  Google Scholar 

  • Schaal S, Ziegler W (1988) Messel–Ein Schaufenster in die Geschichte der Erde und des Lebens. Verlag Waldemar Kramer, Frankfurt am Main

  • Schindewolf OH (1950) Grundfragen der Paläontologie. E Schweizerbart’sche Verlagsbuchhandlung, Erwin Nügele, Stuttgart

  • Schultz CB, Stout TM (1980) Ancient soils and climatic changes in the Central Great Plains. Trans Nebr Acad Sci 8:187–205

    Google Scholar 

  • Shackleton NJ, Blackman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, et al (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:620–623

    CAS  Google Scholar 

  • Simpson GG (1953) The meaning of evolution. Yale University Press, New Haven, Conn.

  • Smith FA, Betancourt JL, Brown JH (1995) Evolution of body size in the woodrat over the past 25,000 years of climate change. Science 270:2012–2014

    CAS  Google Scholar 

  • Stanley SM (1986) Anatomy of a regional mass extinction: Plio–Pleistocene decimation of the western Atlantic bivalve fauna. Palaios 1:17–36

    Google Scholar 

  • Stanley SM (1987) Extinction. Freeman, New York

  • Stanley SM (1995) Climatic forcing and the origin of the human genus. In: Kennett J, Stanley S (eds) Studies in geophysics: effects of past global change on life. National Academic Press, Washington, D.C., pp 233–243

  • Stanley SM, Ruddiman WF (1995) Neogene ice age in the North Atlantic region: climate changes, biotic effects, and forcing factors. In: DiMichele WA, Phillips TL, Stanley SM, Knoll AH, Kennett JP (eds) Effects of past global change on life. National Academic Press, Washington, D.C., pp 118–133

  • Stitt JH (1975) Adaptive radiation, trilobite paleoecology, and extinction, Ptychaspid Biomere, Late Cambrian of Oklahoma. Fossils Strata 4:381–390

    Google Scholar 

  • Stott LD, Kennett JP (1990) The paleoceanographic and paleoclimatic signature of the Cretaceous/Paleogene boundary in the Antarctic: stable isotopic results from ODP Leg 113. Proc Ocean Drilling Prog Sci Results 113:829–846

    Google Scholar 

  • Stout TM (1978) The comparative method in stratigraphy: the beginning and end of an ice age. Trans Nebr Acad Sci 6:1–18

    Google Scholar 

  • Stucky RK (1995) Problems and speculation in mammalian paleoecology and evolution: Western North America during the Paleogene. Fossils of Arizona, vol III, Proc 1995 SW Paleontol Soc Mesa SW Museum, Arizona, pp 97–103

    Google Scholar 

  • Sundberg FA (1996) Morphological diversification of Ptychopariida (Trilobita) from the Marjumiid biomere (Middle and Upper Cambrian). Paleobiology 22:49–65

    Google Scholar 

  • Van Valen LM (1971) Adaptive zones and the orders of mammals. Evolution 25:420–428

    Google Scholar 

  • Vella P (1968) Inferred temperature fluctuations at the beginning of the Taranaki Epoch (Upper Miocene). Tuatara 16:45–49

    Google Scholar 

  • Vrba ES (1985a) Environment and evolution: alternative causes of the temporal distribution of evolutionary events. S Afr J Sci 81:229–236

    Google Scholar 

  • Vrba ES (1985b) African Bovidae: evolutionary events since the Miocene. S Afr J Sci 81:263–266

    Google Scholar 

  • Vrba ES (1988) Late Pliocene climatic events and hominid evolution. In: Grine FE (ed) Evolutionary history of the “robust” australopithecines. Aldine de Gruyter, New York, pp 405–426

  • Webb SD (1969) Extinction–origination equilibria in late Cenozoic land mammals of North America. Evolution 23:688–702

    Google Scholar 

  • Webb SD (1989) The fourth dimension in North American terrestrial mammalian communities. In: Morris DW, Abramsky Z, Fox BJ, Willig MR (eds) Patterns in the structure of mammalian communities. Texas Tech University, Lubbock, Spec Publ Mus 28:181–203

  • Whistler DP, Burbank DW (1992) Miocene biostratigraphy and biochronology of the Dove Spring Formation, Mojave Desert, California and characterization of the Clarendonian mammal age (late Miocene) in California. Bull Geol Soc Am 104:644–658

    Article  Google Scholar 

  • Williams EE (1972) The origin of faunas. Evolution of lizard congeners in a complex island fauna: a trial analysis. Evol Biol 6:47–89

    Google Scholar 

  • Williamson P (1981) Paleontological documentation of speciation in Cenozoic molluscs from the Turkana Basin. Nature 293:437–443

    Google Scholar 

  • Wolfe JA (1978) A paleobotanical interpretation of Tertiary climates in the Northern Hemisphere. Am Sci 66:694–703

    Google Scholar 

  • Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. Geophys Monogr 32:357–375

    Google Scholar 

  • Wolfe JA, Hopkins DM (1967) Climatic changes recorded by Tertiary land floras in northwestern North America. In: Hatai K (ed) Tertiary correlation and climatic changes in the Pacific. 11th Pacific Sci Congr Symp, Tokyo 25:67–76

  • Woodburne MO (ed) (1987) Cenozoic mammals of North America: geochronology and biostratigraphy. University of California Press, Berkeley

    Google Scholar 

  • Woodburne MO, Swisher CC III (1995) Land mammal high-resolution geochronology, intercontinental overland dispersals, sea-level, climate and vicariance. In: Berggren WA, Kent DV, Aubry M-P, Hardenbol J (eds) Geochronology, time scales and global stratigraphic correlation. SEPM Spec Publ 54:335–364

    Google Scholar 

  • Wymstra TA, Hoekstra S, Vries BJ de, van der Hammen T (1984) A preliminary study of periodicity in percentage curves dated by pollen density. Acta Bot Neerl 33:547–557

    Google Scholar 

  • Zachos JC, Lohmann KC, Walker JCG, Wise SW (1993) Abrupt climate change and transient climates during the Paleogene: a marine perspective. J Geol 101:191–213

    CAS  PubMed  Google Scholar 

  • Zeveloff SI, Boyce MS (1988) Body size patterns in North American mammal faunas. In: Boyce MS (ed) Evolution of life histories of mammals. Yale University Press, New Haven, pp 123–146

  • Zubakov VA, Borzenkova II (1990) Global palaeoclimate of the late Cenozoic. Dev Palaeontol Strat 12:1–456

    Google Scholar 

Download references

Acknowledgements

We wish to thank A. Seilacher, M. Dawson, and two anonymous reviewers for editorial comments. T.J.M. wishes to thank his PhD committee at Kansas University: L.D. Martin, D. Miao, R.W. Wilson, R.M. Timm, P. Wells, and D.W. Frayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L.D., Meehan, T.J. Extinction may not be forever. Naturwissenschaften 92, 1–19 (2005). https://doi.org/10.1007/s00114-004-0586-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0586-9

Keywords

Navigation