Skip to main content
Log in

Brain mechanisms that control sleep and waking

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

This review paper presents a brief historical survey of the technological and early research that laid the groundwork for recent advances in sleep–waking research. A major advance in this field occurred shortly after the end of World War II with the discovery of the ascending reticular activating system (ARAS) as the neural source in the brain stem of the waking state. Subsequent research showed that the brain stem activating system produced cortical arousal via two pathways: a dorsal route through the thalamus and a ventral route through the hypothalamus and basal forebrain. The nuclei, pathways, and neurotransmitters that comprise the multiple components of these arousal systems are described. Sleep is now recognized as being composed of two very different states: rapid eye movements (REMs) sleep and non-REM sleep. The major findings on the neural mechanisms that control these two sleep states are presented. This review ends with a discussion of two current views on the function of sleep: to maintain the integrity of the immune system and to enhance memory consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adey WR, Kado RT, Rhodes JM (1963) Sleep, cortical and subcortical recordings in the chimpanzee. Science 141:932–933

    CAS  PubMed  Google Scholar 

  • Allison T, Gerber SD, Breedlove SM, Dryden GL (1977) A behavioural and polygraphic study of sleep in the shrews Suncus murinus, Blarina brevicauda and Cryptatis parva. Behav Biol 20:354–366

    CAS  PubMed  Google Scholar 

  • Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118:273–274

    CAS  PubMed  Google Scholar 

  • Batini C, Palestini M, Rossi GF, Zanchetti A (1959a) Effects of complete pontine transections on the sleep-wakefulness rhythm, the midpontine pretrigeminal preparation. Arch Ital Biol 97:1–12

    Google Scholar 

  • Batini C, Palestini M, Rossi GF, Zanchetti A (1959b) Neural mechanisms underlying the enduring EEG and behavioral activation in the midpontine pretrigeminal cat. Arch Ital Biol 97:13–25

    Google Scholar 

  • Berger H (1929) Über das Elektronkephalogramm. Arch Psychiat Nervenkrank 87:527–570

    Google Scholar 

  • Bergmann BM, Kushida CA, Everson CA, Gilliland MA, Overmyer WH, Rechtschaffen A (1989) Sleep deprivation in the rat. II. Methodology. Sleep 12:5–12

    CAS  PubMed  Google Scholar 

  • Braun AR, Balkin TJ, Wesensten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P (1997) Regional cerebral blood flow throughout the sleep-wake cycle. Brain 120:1173–1197

    Article  PubMed  Google Scholar 

  • Brazier MAB (1961) A history of the electrical activity of the brain. Pitman Medical, London

  • Buzsaki G (1998) Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7:17–23

    Article  PubMed  Google Scholar 

  • Chase MH, Morales FR (2000) Control of motorneurons during sleep. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine. WB Saunders, Philadelphia, pp 155–168

  • Cicala GA, Albert IB, Ulmer FA (1970) Sleep and other behaviours of the red kangeroo (Megaleia rufa). Animal Behav 18:786–790

    Google Scholar 

  • Clarke RH, Horsley V (1906) A method of investigating the deep ganglia and tracts of the central nervous system (cerebellum). Br Med J 2:1799–1800

    Google Scholar 

  • Dale RC, Church AJ, Surtees RAH, Lees AJ, Adcock JE, Harding B, Neville BGR, Giovannoni G (2004) Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127:21–33

    Article  PubMed  Google Scholar 

  • Davis CJ, Harding JW, Wright JW (2003) REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res 973:293–297

    Article  CAS  PubMed  Google Scholar 

  • Dement W (1958) The occurrence of low voltage, fast electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 10:291–296

    Article  CAS  Google Scholar 

  • Economo C von (1923) Encephalitis lethargica. Wien Med Wochenschr 73:777–782

    Google Scholar 

  • Economo C von (1930) Sleep as a problem of localization. J Nerv Ment Dis 71:248–259

    Google Scholar 

  • Eriksson KS, Sergeeva O, Brown RE, Haas HL (2001) Orexin excites the histaminergic tuberomammillary neurons. Soc Neurosci Abstr 27:8.7

    Google Scholar 

  • Erlanger J, Gasser HS (1924) The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Am J Physiol 70:624–666

    Google Scholar 

  • Everson CA (1993) Sustained sleep deprivation impairs host defense. Am J Physiol Regulatory Integ Comp Physiol 265:R1148–R1154

    CAS  Google Scholar 

  • Everson CA, Toth LA (2000) Systemic bacterial invasion induced by sleep deprivation. Am J Physiol Regulatory Integ Comp Physiol 278:R905–R916

    CAS  Google Scholar 

  • Faure J, Vincent D, LeNovenne J, Geissmann P (1963) Sommeil lent et stade paradoxal chez le lapin des deux sexes: role du milieu. C R Hebd Seances Soc Biol 157:799–804

    CAS  Google Scholar 

  • Fishbein W, Gutwein BM (1977) Paradoxical sleep and memory storage processes. Behav Biol 19:425–464

    CAS  PubMed  Google Scholar 

  • Fishbein W, Gutwein BM (1981) Paradoxical sleep and a theory of long-term memory. In: Fishbein W (ed) Sleep, dreams and memory. Spectrum, New York, pp 147–182

  • Frank MG, Issa NP, Stryker MP (2001) Sleep enhances plasticity in the developing visual cortex. Neuron 30:275–287

    Article  CAS  PubMed  Google Scholar 

  • French JD, Magoun HW (1952) Effects of chronic lesions in central cephalic brain stem of monkeys. Arch Neurol Psychiat 68:591–604

    CAS  Google Scholar 

  • Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early discrimination skills. Neurosci 3:1335–1339

    CAS  Google Scholar 

  • Gasser HS, Erlanger J (1922) A study of the action currents of nerve with the cathode ray oscillograph. Am J Physiol 62:496–524

    Google Scholar 

  • Graves LA, Pack AI, Abel T (2001) Sleep and memory: a molecular prospective. Trends Neurosci 24:237–243

    Article  CAS  PubMed  Google Scholar 

  • Graves LA, Heller EA, Pack AI, Abel T (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10:168–176

    Article  PubMed  Google Scholar 

  • Hartmann E, Bernstein J, Wilson C (1967) Sleep and dreaming in the elephant. Psychophysiology 4:389

    Google Scholar 

  • Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239:85–105

    Article  Google Scholar 

  • Hendricks JC, Stefanie MF, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack A (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138

    Article  CAS  PubMed  Google Scholar 

  • Hennevin E, Hars B, Maho C, Bloch V (1995) Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69:125–135

    Article  CAS  PubMed  Google Scholar 

  • Hobson JA (1988) The dreaming brain. Basic Books, New York

  • Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189:55–58

    CAS  PubMed  Google Scholar 

  • Hobson JA, Stickgold R, Pace-Schott EF (1998) The neuropsychology of REM sleep dreaming. NeuroReport 9:R1–R14

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Darvesh S, Groot MHM de, Rusak B (2001) Orexin immunoreactivity in normal and Alzheimer’s disease brainstem. Soc Neurosci Abstr 27:965.11

    Google Scholar 

  • Ishimori K (1909) True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23:429–457

    Google Scholar 

  • Jones BE (1993) The organization of cholinergic systems and their functional importance in sleep-waking states. Prog Brain Res 98:61–71

    CAS  PubMed  Google Scholar 

  • Jones BE (2000) Basic mechanisms of sleep-wake states. In: Kryger MH, Roth T, Dement W (eds) Principles and practice of sleep medicine. WB Saunders, Philadelphia, pp 134–154

  • Jones BE, Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brain stem studied by choline acetyltransferase and tyrosine hydroxylase immunohistochemistry. J Comp Neurol 261:15–32

    CAS  PubMed  Google Scholar 

  • Jouvet M (1962) Recherches sur les structures nerveuses et les mécanismes responsables des différentes phases du sommeil physiologique. Arch Ital Biol 100:125–206

    CAS  PubMed  Google Scholar 

  • Jouvet M, Valatx JL (1962) Etude polygraphique du sommeil chez l’agneau. C R Soc Biol Paris 156:1411–1414

    Google Scholar 

  • Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. C R Soc Biol 153:1024–1028

    CAS  Google Scholar 

  • Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implication for sleep and sleep disorders. Trends Neurosci 23:359–365

    Article  CAS  PubMed  Google Scholar 

  • Krueger J, Walter J, Levin C (1985) Factor S and related somnogens: an immune theory for slow-wave sleep. In: McGinty D, Drucker-Colín R, Morrison A, Parmeggiani L (eds) Brain mechanisms of sleep, Raven, New York, pp 253–275

  • Kushida CA, Bergmann BM, Rechtschaffen A (1989) Sleep deprivation in the rat. IV. Paradoxical sleep deprivation. Sleep 12:22–30

    CAS  PubMed  Google Scholar 

  • Lange T, Perras B, Fehm HL, Born J (2003) Sleep enhances the human antibody response to hepatitus A vaccination. Psychosom Med 65:831

    Article  PubMed  Google Scholar 

  • Latash LP, Galina GS (1975) Polygraphic characteristics of the dog’s sleep. Sleep Res 4:145

    Google Scholar 

  • Lin JS, Sakai K, Jouvet M (1988) Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 27:111–122

    Article  CAS  PubMed  Google Scholar 

  • Lindsley DB, Bowden J, Magoun HW (1949) Effect upon the EEG of acute injury to the brain stem activating system. Electroencephalogr Clin Neurophysiol 1:475–486

    Google Scholar 

  • Lindsley DB, Schreiner LH, Knowles WB, Magoun HW (1950) Behavior and EEG changes following chronic brain stem lesions in the cat. Electroencephalogr Clin Neurophysiol 2:483–498

    Article  CAS  PubMed  Google Scholar 

  • Lineberry CG, Siegel J (1971) EEG synchronization, behavioral inhibition, and mesencephalic unit effects produced by stimulation of orbital cortex, basal forebrain and caudate nucleus. Brain Res 34:143–161

    Article  CAS  PubMed  Google Scholar 

  • Macchi G, Bentivoglio M (1986) The thalamic intralaminar nuclei and the cerebral cortex. In: Jones EG, Peters A (eds) Cerebral cortex, vol 5: Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 355–401

  • Maquet P (2001) The role of sleep in learning and memory. Science 294:1048–1052

    Article  CAS  PubMed  Google Scholar 

  • Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye movement sleep and dreaming. Nature 383:163–166

    Article  CAS  PubMed  Google Scholar 

  • Marshall LH, Magoun HW (1990) The Horsley–Clarke stereotaxic instrument: the beginning. Kopf Carrier October:1–5

    Google Scholar 

  • Marshall LH, Magoun HW (1991) The Horsley–Clarke stereotaxic instrument: the first three instruments. Kopf Carrier May:1–5

    Google Scholar 

  • McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189:58–60

    CAS  PubMed  Google Scholar 

  • McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23:9687–9695

    CAS  PubMed  Google Scholar 

  • Monnier M, Koller T, Graber S (1963) Humoral influences of induced sleep and arousal upon electrical brain activity of animals with crossed circulation. Exp Neurol 8:264–277

    Article  Google Scholar 

  • Moore RY, Abrahamson EA, Pol A van den (2001) The hypocretin neuron system: an arousal system in the human brain. Arch Ital Biol 139:195–205

    CAS  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Google Scholar 

  • Nagasaki H, Kitahama K, Valtax J-L, Jouvet M (1980) Sleep-promoting effect of the sleep-promoting substance (SPS) and delta sleep-inducing peptide (DSIP) in the mouse. Brain Res 192:276–280

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M, Suda S, Namba H, Storch FI, Dang TP, Mendelson W, Mishkin M, Kennedy C, Gillin JC, Smith CB, Sokoloff L (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9:271–279

    CAS  PubMed  Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain. Little, Brown and Co, Boston, pp 3–30

  • Nofzinger EA, Mintun MA, Wiseman MB, Kupfer DJ, Moore RY (1997) Forebrain activation of REM sleep: an FDG PET study. Brain Res 770:192–201

    Article  CAS  PubMed  Google Scholar 

  • Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605

    CAS  PubMed  Google Scholar 

  • Pappenheimer JR, Miller TB, Goodrich CA (1967) Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc Natl Acad Sci 58:513–518

    CAS  PubMed  Google Scholar 

  • Peyron C, Tighe DK, Pol AN van den, Lecca L de, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18:9996–10015

    CAS  PubMed  Google Scholar 

  • Piéron H (1913) Le problème physiologique du sommeil. Masson et Cie, Paris

  • Plihal W, Born J (1997) Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9:534–457

    Google Scholar 

  • Plihal W, Born J (1999) Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36:571–582

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjørkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Purves D, Augustine GJ, Fitzpatrick D, Katz LC, LaMantia A-S, McNamara JO (eds) (1997) Neuroscience. Sinauer, Sunderland, Mass.

  • Ramm P, Smith CT (1990) Rates of cerebral protein synthesis are linked to slow-wave sleep in the rat. Physiol Behav 48:749–753

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Gilliland MA, Bergmann BM, Winter JB (1983) Physiological correlates of prolonged sleep deprivation in rats. Science 221:182–184

    CAS  PubMed  Google Scholar 

  • Rechtschaffen A, Bergmann BM, Everson, CA, Kushida CA, Gilliland MA (1989) Sleep deprivation in the rat. X. Integration and discussion of the findings. Sleep 12:68–87

    CAS  PubMed  Google Scholar 

  • Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C (2002) Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci 22:10914–10923

    CAS  PubMed  Google Scholar 

  • Roldan E, Weiss T, Fifkova E (1963) Excitability changes during the sleep cycle of the rat. Electroencephalogr Clin Neurophysiol 15:775–785

    Article  CAS  PubMed  Google Scholar 

  • Ruckebusch Y (1962) Evolution post-natale du sommeil chez les ruminants. C R Soc Biol Paris 156:1869–1873

    CAS  PubMed  Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237:21–46

    CAS  PubMed  Google Scholar 

  • Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Mountcastle VB, Plum F (eds) Handbook of physiology, vol V: The nervous system. American Physiological Society, Bethesda, Md., pp 169–210

  • Saper CB, Loewy AD (1980) Efferent projections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Sherin JE, Elmquist JK (1997) Role of the ventrolateral preoptic area in sleep induction. In: Hayaishi O, Inoué S (eds) Sleep and arousal disorders: from molecule to behavior. Academic Press, Tokyo, pp 281–294

  • Sastre JP, Jouvet M (1979) Le comportement onirique du chat. Physiol Behav 22:979–989

    Article  CAS  PubMed  Google Scholar 

  • Schlehuber CJ, Fleming DG, Lange GD, Spooner CE (1974) Paradoxical sleep in chickens. Behav Biol 11:537–546

    CAS  PubMed  Google Scholar 

  • Schoenberger GA, Monnier M (1977) Characterization of delta EEG sleep-inducing peptide (DSIP). Proc Nat Acad Sci Wash 74:1282–1286

    Google Scholar 

  • Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Shurley JT, Serafetinides EA, Brookes SE, Elsner R, Kenney DW (1969) Sleep in cetaceans. 1. The pilot whale, Globicephala scammoni. Psychophysiology 6:230

    Google Scholar 

  • Siegel J (2002) The neural control of sleep and waking. Springer, Berlin Heidelberg New York

  • Siegel J, Lineberry CG (1968) Caudate-capsular induced modulation of single unit activity in mesencephalic reticular formation. Exp Neurol 22:444–463

    Article  CAS  PubMed  Google Scholar 

  • Siegel J, Wang RY (1974) Electroencephalographic, behavioral, and single-unit effects produced by stimulation of forebrain inhibitory structures in cats. Exp Neurol 42:28–50

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM (1985) Ponto-medullary interactions in the generation of REM sleep. In: McGinty DJ, Drucker-Colin R, Morrison A, Parmeggiani PL (eds) Brain mechanisms of sleep. Raven, New York, pp 157–174

  • Siegel JM (2001) The REM sleep-memory consolidation hypothesis. Science 294:1058–1063

    Article  CAS  PubMed  Google Scholar 

  • Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Pettigrew JD (1996) The echidna Tachyglossus aculeatus combines REM and non-REM aspects in a single sleep state: implication for the evolution of sleep. J Neurosci 16:3500–3506

    CAS  PubMed  Google Scholar 

  • Siegel JM, Manger PR, Nienhuis R, Fahringer HM, Shalita T, Pettigrew JD (1999) Sleep in the platypus. Neuroscience 91:391–400

    Article  CAS  PubMed  Google Scholar 

  • Smith C (1995) Sleep states and memory processes. Behav Brain Res 69:137–145

    Article  CAS  PubMed  Google Scholar 

  • Smith C (1996) Sleep states, memory processes and synaptic plasticity. Brain Behav Res 78:49–56

    Article  CAS  Google Scholar 

  • Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491–506

    Article  PubMed  Google Scholar 

  • Spiegel K, Sheridan JF, Van Cauter E (2002) Effect of sleep deprivation on response to immunization. J Am Med Assoc 288:1471–1472

    Article  Google Scholar 

  • Steriade M, McCarley RW (1990) Brainstem control of wakefulness and sleep. Plenum, New York

  • Sterman MB, Clemente CD (1962a) Forebrain inhibitory mechanisms: cortical synchronization induced by basal forebrain stimulation. Exp Neurol 6:91–102

    Article  CAS  PubMed  Google Scholar 

  • Sterman MB, Clemente CD (1962b) Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 6:103–117

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R, LaTanya J, Hobson JA (2000a) Visual discrimination learning requires sleep after training. Nat Neurosci 3:1237–1238

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA (2000b) Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12:246–254

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R, Hobson JA, Fosse R, Fosse M (2001) Sleep, learning, and dreams: off-line memory processing. Science 294:1052–1057

    Article  CAS  PubMed  Google Scholar 

  • Szymusiak R, McGinty D (1986) Sleep suppression following kainic acid-induced lesions of the basal forebrain. Exp Neurol 94:598–614

    Article  CAS  PubMed  Google Scholar 

  • Thakkar MM, Strecker RE, Delgiacco RA, McCarley RW (1999) Adenosinergic A1 inhibition of basal forebrain wake-active neurons: a combined unit recording and microdialysis study in freely behaving cats. Sleep Res Online 2 (Suppl 1):91–92

    Google Scholar 

  • Thakkar MM, Winston S, McCarley RW (2002) Orexin neurons of the hypothalamus express adenosine A1 receptors. Brain Res 944:190–194

    Article  CAS  PubMed  Google Scholar 

  • Van Cauter E, Spiegel K (1999) Circadian and sleep control of hormonal secretions. In: Zee PC, Turek FW (eds) Regulation of sleep and circadian rhythms. Marcel Dekker, New York, pp 397–425

  • Xi M-C, Morales FR, Chase MH (1999) A GABAergic reticular system is involved in the control of wakefulness and sleep. Sleep Res Online 2:43–48

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerome Siegel.

Additional information

This article is based in part on material in the book “The neural control of sleep and waking” (J. Siegel, 2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, J. Brain mechanisms that control sleep and waking. Naturwissenschaften 91, 355–365 (2004). https://doi.org/10.1007/s00114-004-0541-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-004-0541-9

Keywords

Navigation