Skip to main content

The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity

Abstract

An extreme example of a low light-level lifestyle among flying birds is provided by the oilbird, Steatornis caripensis (Steatornithidae, Caprimulgiformes). Oilbirds breed and roost in caves, often at sufficient depth that no daylight can penetrate, and forage for fruits at night. Using standard microscopy techniques we investigated the retinal structure of oilbird eyes and used an ophthalmoscopic reflex technique to determine the parameters of these birds’ visual fields. The retina is dominated by small rod receptors (diameter 1.3±0.2 μm; length 18.6±0.6 μm) arranged in a banked structure that is unique among terrestrial vertebrates. This arrangement achieves a photoreceptor density that is the highest so far recorded (≈1,000,000 rods mm−2) in any vertebrate eye. Cone photoreceptors are, however, present in low numbers. The eye is relatively small (axial length 16.1±0.2 mm) with a maximum pupil diameter of 9.0±0.0 mm, achieving a light-gathering capacity that is the highest recorded in a bird (f-number ≈1.07). The binocular field has a maximum width of 38° and extends vertically through 100° with the bill projecting towards the lower periphery; a topography that suggests that vision is not used to control bill position. We propose that oilbird eyes are at one end of the continuum that juxtaposes the conflicting fundamental visual capacities of sensitivity and resolution. Thus, while oilbird visual sensitivity may be close to a maximum, visual resolution must be low. This explains why these birds employ other sensory cues, including olfaction and echolocation, in the control of their behaviour in low-light-level environments.

This is a preview of subscription content, access via your institution.

Fig. 1a–c
Fig. 2

References

  • Archer SN, Djamgoz MBA, Loew E, Partridge JC, Vallerga S (1999) Adaptive mechanisms in the ecology of vision. Kluwer, Dordrecht

  • Bowmaker JK (1977) The visual pigments, oil droplets and spectral sensitivity of the pigeon. Vision Res 17:1129–1138

    CAS  PubMed  Google Scholar 

  • Bowmaker JK, Dartnall HJA (1980) Visual pigments of rods and cones in a human retina. J Physiol 298:501–511

    CAS  PubMed  Google Scholar 

  • Bowmaker JK, Martin GR (1978) Visual pigments and colour vision in a nocturnal bird, Strix aluco (tawny owl). Vision Res 18:1125–1130

    CAS  PubMed  Google Scholar 

  • Davies MNO, Green PR (1994) Perception and motor control in birds: an ecological approach. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fite KV (1973) Anatomical and behavioral correlates of visual acuity in the great horned owl. Vision Res 13:219–230

    Article  CAS  PubMed  Google Scholar 

  • Fite KV, Rosenfield-Wessels J (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    CAS  PubMed  Google Scholar 

  • Guillemaine M, Martin GR, Fritz H (2002) Feeding methods, visual fields and vigilance in dabbling ducks (Anatidae). Funct Ecol 16:522–529

    Article  Google Scholar 

  • Konishi M, Knudsen EI (1979) The oilbird: hearing and echolocation. Science 204:425–427

    CAS  PubMed  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592

  • Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, Oxford

  • Locket NA (1977) Adaptations to the deep-sea environment. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 67–192

  • Martin GR (1990) Birds by night. T & AD Poyser, London

  • Martin GR (1994a) Form and function in the optical structure of bird eyes. In: Davies MNO, Green PR (eds) Perception and motor control in birds: an ecological approach. Springer, Berlin Heidelberg New York, pp 5–34

  • Martin GR (1994b) Visual fields in woodcocks Scolopax rusticola (Scolopacidae; Charadriiformes). J Comp Physiol A 174:787–793

    Google Scholar 

  • Martin GR, Katzir G (1995) Visual fields in ostriches. Nature 374:19–20

    Article  CAS  Google Scholar 

  • Martin GR, Katzir G (1999) Visual field in short-toed eagles Circaetus gallicus and the function of binocularity in birds. Brain Behav Evol 53:55–66

    CAS  Google Scholar 

  • Meyer DB (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 549–611

  • Miller WH (1979) Ocular optical filtering. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Springer, Berlin Heidelberg New York, pp 69–143

  • Murphy CJ, Evans HE, Howland HC (1985) Towards a schematic eye for the great horned owl. Fortschr Zool 30:703–706

    Google Scholar 

  • Nicol JAC, Arnott HJ (1974) Tapeta lucida in the eyes of goatsuckers (Caprimulgidae). Proc R Soc Lond B 187:349–352

    CAS  PubMed  Google Scholar 

  • Reymond, L (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vision Res 27:1859–1974

    Article  CAS  PubMed  Google Scholar 

  • Rojas, LM, McNeil R, Cabana T, Lachapelle P (1999) Behavioral, morphological and physiological correlates of diurnal and nocturnal vision in selected wading bird species. Brain Behav Evol 53:227–242

    Google Scholar 

  • Snow DW (1961) The natural history of the oilbird, Steatornis caripensis, in Trinidad. 1. General behaviour and breeding habits. Zoologica 46:27–48

    Google Scholar 

  • Thomas BT (1999) Family Steatornithidae (oilbird). In: del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 5. Barn-owls to hummingbirds. Lynx, Barcelona, pp 244–251

  • Voous KH (1988) Owls of the northern hemisphere. Collins, London

  • Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook, Bloomsfield Hills, Mich.

  • Welty JC, Baptista LF (1988) The life of birds, 4th edn. WB Saunders, New York

Download references

Acknowledgements

This work was supported by grants from the Royal Society of London, the Natural Sciences and Engineering Research Council of Canada, and the Consejo de Investigación de la Universidad de Oriente. The investigations were in accordance with guidelines established by the Universidad de Oriente and the Canadian Council on Animal Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martin, G., Rojas, L.M., Ramírez, Y. et al. The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwissenschaften 91, 26–29 (2004). https://doi.org/10.1007/s00114-003-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0495-3

Keywords

  • Retina
  • Axial Length
  • Retinal Structure
  • Entrance Pupil
  • Binocular Field