Skip to main content

Advertisement

Log in

Angiogenesis factors in gliomas: a new key to tumour therapy?

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Angiogenesis, the formation of new blood vessels, is required for the growth and expansion of tumours. Gliomas, the most common brain tumours, are particularly highly vascularized and, therefore, serve as a model to elucidate the process of tumour angiogenesis and to investigate new anti-angiogenic therapies. This review describes the role of angiogenic factors in glioma angiogenesis and new strategies to inhibit glioma growth by application of anti-angiogenic substances. We focus on vascular endothelial growth factor (VEGF), but also examine the role of angiopoietin and pleiotropic factors such as platelet-derived growth factor (PDGF), pleiotrophin and transforming growth factor-β (TFG-β). Strategies to inhibit glioma growth by reducing the action of angiogenic factors, by the application of anti-angiogenic substances such as angiostatin or endostatin, or inactivation of endothelial cells, are discussed. These new anti-angiogenic therapies appear to have a high potential not only for the treatment of gliomas, but also of other tumours.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Albini A, Florio T, Giunciuglio D, Masiello L, Carlone S, Corsaro A, Thellung S, Cai T, Noonan DM, Schettini G (1999) Somatostatin controls Kaposi's sarcoma tumor growth through inhibition of angiogenesis. FASEB J 13:647–655

    CAS  PubMed  Google Scholar 

  • Bates DO, Hillman NJ, Williams B, Neal CR, Pocock TM (2002) Regulation of microvascular permeability by vascular endothelial growth factors. J Anat 200:581–597

    Article  CAS  PubMed  Google Scholar 

  • Bjerkvig R, Lund-Johansen M, Edvardsen K (1997) Tumor cell invasion and angiogenesis in the central nervous system. Curr Opin Oncol 9:223–229

    CAS  PubMed  Google Scholar 

  • Boehm T, Folkman J, Browder T, O'Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    CAS  PubMed  Google Scholar 

  • Bögler O, Huang HJS, Kleihues P, Cavenee WK (1995) The p53 gene and its role in human brain tumours. Glia 15:308–237

    PubMed  Google Scholar 

  • Breier G, Blum S, Peli J, Groot M, Wild C, Risau W, Reichmann E (2002) Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. Int J Cancer 97:142–148

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    CAS  PubMed  Google Scholar 

  • Chaudhry IH, O'Donovan DG, Brenchley PE, Reid H, Roberts IS (2001) Vascular endothelial growth factor expression correlates with tumour grade and vascularity in gliomas. Histopathology 39:409–415

    Article  CAS  PubMed  Google Scholar 

  • Cheng S-Y, Huang HJ, Nagane M, Ji XD, Wang D, Shih CC, Arap W, Huang CM, Cavenee WK (1996) Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA 93:8502–8507

    Article  CAS  PubMed  Google Scholar 

  • Conn G, Soderman DD, Schaeffer MT, Wile M, Hatcher VB, Thomas KA (1990) Purification of a glycoprotein vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc Natl Acad Sci USA 87:1323–1327

    CAS  PubMed  Google Scholar 

  • Criscuolo GR, Merrill MJ, Oldfield EH (1998) Further characterization of malignant glioma-derived vascular permeability factor. J Neurosurg 69:254–262

    Google Scholar 

  • Dameron KM, Volpert OV, Tainsky MA, Bouck N (1994) Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584

    PubMed  Google Scholar 

  • Davies DC (2002) Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat 200:639–646

    Article  CAS  PubMed  Google Scholar 

  • Dulic V, Kaufmann WK, Wilson SJ, Tlsty TD, Lees E, Harper JW, Elledge SJ, Reed SI (1994) P53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023

    CAS  PubMed  Google Scholar 

  • Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neuro-Oncol 50:121–137

    Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    CAS  PubMed  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    CAS  PubMed  Google Scholar 

  • Flaumenhaft R, Kojima S, Abe M, Rifkin DB (1993) Activation of latent transforming growth factor beta. Adv Pharmacol 24:51–76

    CAS  PubMed  Google Scholar 

  • Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am September:150–154

    Google Scholar 

  • Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    CAS  PubMed  Google Scholar 

  • Forstreuter F, Lucius R, Mentlein R (2002) Vascular endothelial growth factor (VEGF) induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 132:93–98

    Article  CAS  PubMed  Google Scholar 

  • Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    CAS  PubMed  Google Scholar 

  • Funari FB, Huang HS, Cavenee WK (1995) Genetics and malignant progression of human brain tumours. Cancer Surv 25:233–275

    CAS  PubMed  Google Scholar 

  • Goldman E (1907) The growth of malignant disease in man and the lower animals with special reference to the vascular system. Lancet 2:1236–1240

    Google Scholar 

  • Griscelli F, Li H, Bennaceur-Griscelli A, Soria J, Opolon P, Soria C, Perricaudet M, Yeh P, Lu H (1998) Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA 95:6367–6372

    Article  CAS  PubMed  Google Scholar 

  • Hahn SA, Schutte M, Hoque AT, Moskaluk CA, Costa LT da, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    CAS  PubMed  Google Scholar 

  • Harada H, Nakagawa K, Iwata S, Saito M, Kumon Y, Sakaki S, Sato K, Hamada K (1999) Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 59:3783–3789

    PubMed  Google Scholar 

  • Held-Feindt J, Lütjohann B, Ungefroren H, Mehdorn HM, Mentlein R (2003) Interaction of transforming growth factor-β (TGF-β) and epidermal growth factor (EGF) in human glioma cells. J Neuro-Oncol 63:117–127

    Google Scholar 

  • Herold-Mende C, Steiner HH, Andl T, Riede D, Buttler A, Reisser C, Fusenig NE, Mueller MM (1999) Expression and functional significance of vascular endothelial growth factor receptors in human tumor cells. Lab Invest 79:1573–1582

    CAS  PubMed  Google Scholar 

  • Horton HM, Anderson D, Hernandez P, Barnhart KM, Norman JA, Parker SE (1999) A gene therapy for cancer using intramuscular injection of plasmid DNA encoding interferon alpha. Proc Natl Acad Sci USA 96:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Hunter T (1997) Oncoprotein networks. Cell 88:333–346

    CAS  PubMed  Google Scholar 

  • Izumoto S, Arita N, Ohnishi T, Hiraga S, Taki T, Tomita N, Ohue M, Hayakawa T (1997) Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. Cancer Lett 112:251–256

    Article  CAS  PubMed  Google Scholar 

  • Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL (1991) TGF beta 1 and TGF beta 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 49:129–139

    CAS  PubMed  Google Scholar 

  • Joe YA, Hong YK, Chung DS, Yang YJ, Kang JK, Lee YS, Chang SI, You WK, Lee H, Chung SI (1999) Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1–3. Int J Cancer 82:694–699

    Article  CAS  PubMed  Google Scholar 

  • Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T, Feder J, Connolly DT (1989) Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–1312

    CAS  PubMed  Google Scholar 

  • Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2:727–739

    Article  CAS  PubMed  Google Scholar 

  • Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58:4654–4659

    CAS  PubMed  Google Scholar 

  • Kleihues P, Cavenee W (2000) Tumors of the nervous system: pathology and genetics, 2nd edn. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Kleihues P, Ohgaki H, Aguzzi A (1996) Gliomas. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1044–1063

  • Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362:841–844

    CAS  PubMed  Google Scholar 

  • Letterino JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    CAS  PubMed  Google Scholar 

  • Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    CAS  PubMed  Google Scholar 

  • Levy AP, Levy NS, Wegner S, Goldberg MA (1995) Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 270:13333–13340

    CAS  PubMed  Google Scholar 

  • Levy AP, Levy NS, Goldberg MA (1996) Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271:2746–2753

    CAS  PubMed  Google Scholar 

  • Libermann TA, Friesel R, Jaye M, Lyall RM, Westermark B, Drohan W, Schmidt A, Maciag T, Schlessinger J (1987) An angiogenic growth factor is expressed in human glioma cells. EMBO J 6:1627–1632

    CAS  PubMed  Google Scholar 

  • Liebner S, Fischmann A, Rascher G, Duffner F, Grote EH, Kalbacher H, Wolburg H (2000) Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol 100:323–331

    CAS  PubMed  Google Scholar 

  • Massagué J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791

    CAS  PubMed  Google Scholar 

  • Mentlein R, Held-Feindt J (2002) Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomas. J Neurochem 83:747–753

    Article  CAS  PubMed  Google Scholar 

  • Mentlein R, Eichler O, Forstreuter F, Held-Feindt J (2001) Somatostatin inhibits the production of vascular endothelial growth factor (VEGF) in glioma cells. Int J Cancer 92:545–550

    Article  CAS  PubMed  Google Scholar 

  • Merzak A, McCrea S, Koocheckpour S, Pilkington GJ (1994) Control of human glioma cell growth, migration, and invasion in vitro by transforming growth factor-beta 1. Br J Cancer 70:199–203

    CAS  PubMed  Google Scholar 

  • Miyazono K, Ichijo H, Heldin CH (1993) Transforming growth factor-beta: latent forms, binding proteins and receptors. Growth Factors 8:11–22

    CAS  PubMed  Google Scholar 

  • Morimoto T, Aoyagi M, Tamaki M, Yoshino Y, Hori H, Duan L, Yano T, Shibata M, Ohno K, Hirakawa K, Yamaguchi N (2002) Increased levels of tissue endostatin in human malignant gliomas. Clin Cancer Res 8:2933–2938

    CAS  PubMed  Google Scholar 

  • Nagane M, Huang HJ, Cavenee WK (1997) Advances in the molecular genetics of gliomas. Curr Opin Oncol 9:215–222

    CAS  PubMed  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltrak Z (1999) Vascular endothelial growth factor and its receptors. FASEB J 13: 9–22

    CAS  PubMed  Google Scholar 

  • O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328

    CAS  PubMed  Google Scholar 

  • O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88:277–285

    PubMed  Google Scholar 

  • Papadopoulos MC, Saadoun S, Davies DC, Bell BA (2001) Emerging molecular mechanisms of brain tumour oedema. Br J Neurosurg 15:101–108

    Article  CAS  PubMed  Google Scholar 

  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI (1991) Immunohistochemical localization of TGF-beta 1, TGF-beta 2, and TGF-beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol 115:1091–1105

    CAS  PubMed  Google Scholar 

  • Piek E, Westermark U, Kastemar M, Heldin CH, Zoelen EJ van, Nister M, Dijke P ten (1999) Expression of transforming growth factor T(TGF)-beta receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF-beta 1. Int J Cancer 80:756–763

    Article  CAS  PubMed  Google Scholar 

  • Plate KH, Risau W (1995) Angiogenesis in malignant gliomas. Glia 15:339–347

    CAS  PubMed  Google Scholar 

  • Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359:845–848

    CAS  PubMed  Google Scholar 

  • Pore N, Liu S, Haas-Kogan DA, O'Rourke DM, Maity A (2003) PTEN mutation and epidermal growth factor receptor activation regulate vascular endothelial growth factor (VEGF) mRNA expression in human glioblastoma cells by transactivating the proximal VEGF promoter. Cancer Res 63:236–241

    CAS  PubMed  Google Scholar 

  • Powers C, Aigner A, Stoica GE, McDonnell K, Wellstein A (2002) Pleiotrophin signaling through anaplastic lymphoma kinase is rate-limiting for glioblastoma growth. J Biol Chem 277:14153–14158

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Petersen W, Tillmann B, Mentlein R (2001) The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum 44:1082–1088

    CAS  PubMed  Google Scholar 

  • Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R (2003a) Pleiotrophin, an embryonic growth and differentiation factor, is expressed in rheumatoid arthritis. Arthritis Rheum 48:660–667

    Article  CAS  PubMed  Google Scholar 

  • Pufe T, Bartscher M, Petersen W, Tillmann B, Mentlein R (2003b) Pleiotrophin, an embryonic differentiation and growth factor, is expressed in osteoarthritis. Osteoarthritis Cartilage 11:260–264

    Article  CAS  PubMed  Google Scholar 

  • Ratel D, Nasser V, Dupre I, Benabid AL, Berger F (2000) Antibodies to endostatin in a multifocal glioblastoma patient. Lancet 356:1656–1657

    Article  CAS  PubMed  Google Scholar 

  • Reiss M (1997) Transforming growth factor-beta and cancer: a love-hate relationship? Oncol Res 9:447–457

    Google Scholar 

  • Rifkin DB, Mazzieri R, Munger JS, Noguera I, Sung J (1999) Proteolytic control of growth factor availability. Apmis 107:80–85

    CAS  PubMed  Google Scholar 

  • Robinson CJ, Stringer SE (2001) The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 114:853–865

    CAS  PubMed  Google Scholar 

  • Rosen L (2000) Antiangiogenic strategies and agents in clinical trials. Oncologist 5:20–27

    PubMed  Google Scholar 

  • Rosenstein JM, Mani N, Silverman WF, Krum JM (1998) Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci USA 95:7086–7091

    CAS  PubMed  Google Scholar 

  • Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M (1996) Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells: possible roles of SP-1. J Biol Chem 271:28220–28228

    CAS  PubMed  Google Scholar 

  • Sehgal A (1998) Molecular changes during the genesis of human gliomas. Semin Surg Oncol 14:3–12

    Article  CAS  PubMed  Google Scholar 

  • Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    CAS  PubMed  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    PubMed  Google Scholar 

  • Strik HM, Schluesener HJ, Seid K, Meyermann R, Deininger MH (2001) Localization of endostatin in rat and human gliomas. Cancer 91:1013–1019

    CAS  PubMed  Google Scholar 

  • Takano S, Yoshii Y, Kondo S, Suzuki H, Maruno T, Shrai S, Nose T (1996) Concentration of vascular endothelial growth factor in the serum and tumour tissue of brain tumour patients. Cancer Res 56:2185–2190

    CAS  PubMed  Google Scholar 

  • Tannock IF, Hill RP (1987) The basic science of oncology. Pergamon, New York

  • Vajkoczy P, Menger MD (2000) Vascular microenvironments in gliomas. J Neuro-Oncol 50:99–108

    Google Scholar 

  • Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    CAS  PubMed  Google Scholar 

  • Wojtowicz-Praga S (1997) Reversal of tumor-induced tumor-suppression: a new approach to cancer therapy. J Immunother 20:165–177

    CAS  PubMed  Google Scholar 

  • Wrann M, Bodmer S, de Martin R, Siepl C, Hofer-Warbinek R, Frei K, Hofer E, Fontana A (1987) T-cell suppressor factor from human glioblastoma cells is a 12.5 kDa protein closely related to transforming growth factor-beta. EMBO J 6:1633–1636

    CAS  PubMed  Google Scholar 

  • Yamada N, Kato M, Yamashita H, Nister M, Miyazono K, Heldin CH, Funa K (1995) Enhanced expression of transforming growth factor-beta and its type-I and type-II receptors in human glioblastoma. Int J Cancer 62:386–392

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Noble NA, Miller DE, Gold LI, Hishida A, Nagase M, Cohen AH, Border WA (1999) Increased levels of transforming growth factor-beta in HIV-associated nephropathy. Kidney Int 55:579–592

    Article  CAS  PubMed  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    CAS  PubMed  Google Scholar 

  • Zadeh G, Guha A (2003) Neoangiogenesis in human astrocytomas: expression and functional role of angiopoietins and their cognate receptors. Front Biosci 8:E128–137

    CAS  PubMed  Google Scholar 

  • Zagzag D (1995) Angiogenic growth factors in neural embryogenesis and neoplasia. Am J Pathol 146:293–309

    CAS  PubMed  Google Scholar 

  • Zhang HT, Scott PA, Morbidelli L, Peak S, Moore J, Turley H, Harris AL, Ziche M, Bicknell R (2000) The 121 amino acid isoform of vascular endothelial growth factor is more strongly tumorigenic than other splice variants in vivo. Br J Cancer 83:63–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our own experimental studies in this field were supported by grants from the Deutsche Forschungsgemeinschaft, Interdisziplinäres Zentrum für Krebsforschung der Universität Kiel and Fonds der Chemischen Industrie zur Förderung von Chemie und Biochemie. We thank Prof. Dr. Olav Jansen, Clinic of Neurosurgery/Neuroradiology, University of Kiel, for MRT data; Prof. Dr. Ulrike Blömer, Clinic of Neurosurgery, for critical reading of the manuscript; Martina Burmester, Dagmar Freier and Miriam Lemmer for their expert technical assistance; and Clemens Franke for drawing the Figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Mentlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentlein, R., Held-Feindt, J. Angiogenesis factors in gliomas: a new key to tumour therapy?. Naturwissenschaften 90, 385–394 (2003). https://doi.org/10.1007/s00114-003-0449-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0449-9

Keywords

Navigation