Skip to main content
Log in

Spin-charge separation in quasi one-dimensional organic conductors

  • Review
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Matter is excited by adding an electron or extracting one. These excitations can move in the bulk material almost like a free particle, carrying an electronic charge and spin. The electrons try to avoid each other by Coulomb repulsion and also interact magnetically. If they are confined to one dimension, charge and spin excitations are separated and move independently due to the strong interaction. The unique properties of one-dimensional systems are revealed in a number of experiments on strongly anisotropic materials. Here we review the theoretical models and the experimental indications for the unusual behavior of quasi one-dimensional organic conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  • Chow DS, Zamborszky F, Alavi B, Tantillo DJ, Baur A, Merlic CA, Brown SE (2000) Charge ordering in the TMTTF family of molecular conductors. Phys Rev Lett 85:1698–1701

    Article  CAS  PubMed  Google Scholar 

  • Claessen R, Sing M, Schingenschlögl U, Blaha P, Dressel M, Jacobsen CS (2002) Spectroscopic signatures of spin-charge separation in the quasi-one-dimensional organic conductor TTF-TCNQ. Phys Rev Lett 88:096401–1-4

    Article  PubMed  Google Scholar 

  • Clay RT, Mazumdar S, Cambell DK (2003) Pattern of charge ordering in quasi-one-dimensional organic charge-transfer solids. Phys Rev B 67:115121–1-9

    Article  Google Scholar 

  • Dardel B, Malterre D, Grioni M, Weibel P, Baer Y, Voit J, Jérome D (1993) Possible observation of a Luttinger-liquid behaviour from photoemission spectroscopy of one-dimensional organic conductors. Europhys Lett 24:687–692

    CAS  Google Scholar 

  • Dressel M, Grüner G (2002) Electrodynamics of solids. Cambridge University Press, Cambridge

  • Dressel M, Schwartz A, Grüner G, Degiorgi L (1996) Deviations from Drude response in low-dimensional metals: electrodynamics of the metallic state of (TMTSF)2 PF6. Phys Rev Lett 77:398–401

    Article  CAS  PubMed  Google Scholar 

  • Dressel M, Kirchner S, Hesse P, Untereiner G, Dumm M, Hemberger J, Loidl A, Montgomery L (2001) Spin and charge dynamics in Bechgaard salts. Synth Metals 120:719–720

    Article  CAS  Google Scholar 

  • Dumm M, Loidl A, Fravel BW, Starkey KP, Montgomery L, Dressel M (2000) Electron-spin-resonance studies on the organic linear chain compounds (TMTCF) 2 X (C =S, Se and X =\( {{\rm{PF}}_{{\rm{6}}} } \), \( {{\rm{AsF}}_{{\rm{6}}} } \), \( {{\rm{ClO}}_{{\rm{4}}} } \), Br). Phys Rev B 61:511–520

    Article  CAS  Google Scholar 

  • Farges JP (ed) (1994) Organic conductors. Dekker, New York

  • Giamarchi T (1991) Umklapp process and resistivity in one-dimensional fermion systems. Phys Rev B 33:2905–2913

    Article  Google Scholar 

  • Giamarchi T (1997) Mott transition in one dimension. Physica B 230–232:975–980

    Google Scholar 

  • Giamarchi T, Millis AJ (1992) Conductivity of a Luttinger liquid. Phys Rev B 46:9325–9331

    Article  Google Scholar 

  • Haldene FDM (1981) Luttiner liquid theory of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J Phys C 14:2585–2609

    Google Scholar 

  • Ishiguro T, Yamaji K Saito G (1998) Organic superconductors, 2nd edn. Springer, Berlin Heidelberg New York

  • Jérome D (1991) The physics of organic conductors. Science 252:1509–1514

    Google Scholar 

  • Jérome D, Schulz HJ (1982) Organic conductors and superconductors. Adv Phys 31:299–490

    Google Scholar 

  • Jérome D, Mazaud A, Ribault M, Bechgaard K (1980) Superconductivity in a Synthetic Organic Conductors (TMTSF)2PF6. J Phys Lett 41:L95–98

    Google Scholar 

  • Landau LD (1957) The theory of a Fermi liquid. Sov Phys JETP 3:920–925

    CAS  Google Scholar 

  • Lorenz T, Hofmann M, Grüninger M, Freimuth A, Uhrig GS, Dumm M, Dressel M (2002) Evidence for spin-charge separation in quasi one-dimensional organic conductors. Nature 418:614–617

    Article  CAS  PubMed  Google Scholar 

  • Luttinger JM (1963) An exactly solvable model of a many-fermion system. J Math Phys 4:1154–1162

    CAS  Google Scholar 

  • Monceau P (ed) (1985) Electronic properties of inorganic quasi-one-dimensional compounds, part I/II. Reidel, Dordrecht

  • Monceau P, Nad FY, Brazovskii S (2001) Ferroelectric Mott-Hubbard phase of organic (TMTTF) 2 X conductors. Phys Rev Lett 86:4080–4083

    Article  CAS  PubMed  Google Scholar 

  • Moser J, Gabay M, Auban-Senzier P, Jérome D, Bechgaard K, Fabre JM (1998) Transverse transport in (TM) 2 X organic conductors: possible evidence for a Luttinger liquid. Eur Phys J B 1:39–46

    Article  CAS  Google Scholar 

  • Pines D, Nozières P (1966) The theory of quantum liquids, vol 1. Addison-Wesley, Reading

  • Schwartz A, Dressel M, Grüner G, Vescoli V, Degiorgi L, Giarmarchi T (1998) On-chain electrodynamics of metallic (TMTSF)2 X salts: observation of Tomonaga-Luttinger liquid response. Phys Rev B 58:1261–1271

    Article  Google Scholar 

  • Shibata Y, Nishimoto S, Ohta Y (2001) Charge ordering in the one-dimensional extended Hubbard model: implications to the TMTTF family of organic conductors. Phys Rev B 64:235107–1-5

    Article  Google Scholar 

  • Tomonaga S (1950) Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog Theor Phys Kyoto 5:544–569

    Google Scholar 

  • Vescoli V, Degiorgi L, Henderson W, Grüner G, Starkey KP, Montgomery LK (1998) Dimensionality-driven insulator-to-metal transition in the Bechgaard salts. Science 281:1181−1184

    Article  CAS  PubMed  Google Scholar 

  • Voit J (1995) One-dimensional Fermi liquids. Rep Prog Phys 58:977–1116

    Article  CAS  Google Scholar 

  • Wzietek P, Creuzet F, Bourbonnais C, Jérome D, Bechgaard K, Batail P (1993) Nuclear relaxation and electronic correlations in quasi-one-dimensional organic conductors. II. Experiments. J Phys I Paris 3:171–200

    CAS  Google Scholar 

  • Zamborszky F, Yu W, Raas W, Brown SE, Alavi B, Merlic CA, Baur A (2002) Competition and coexistence of bond and charge orders in (TMTTF)2 AsF6. Phys Rev B 66:081103–081106

    Article  Google Scholar 

Download references

Acknowledgements

During the past few years, we have enjoyed collaborations and discussions with R. Claessen, L. Degiorgi, M. Dumm, A. Freimuth, G. Grüner, and J. Voit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dressel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dressel, M. Spin-charge separation in quasi one-dimensional organic conductors. Naturwissenschaften 90, 337–344 (2003). https://doi.org/10.1007/s00114-003-0438-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-003-0438-z

Keywords

Navigation