Skip to main content

Advertisement

Log in

'Molecular farming' of antibodies in plants

  • Review Article
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

'Molecular farming' is the production of valuable recombinant proteins in transgenic organisms on an agricultural scale. While plants have long been used as a source of medicinal compounds, molecular farming represents a novel source of molecular medicines, such as plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies, whose medical benefits are understood at a molecular level. Until recently, the broad use of molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell culture. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines or vaccines could be synthesised in plants and this technology is termed 'molecular farming'. It results in pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial culture. An advantage of molecular farming lies in the ability to perform protein production on a massive scale using hectares of cultivated plants. These plants can then be harvested and transported using the agricultural infrastructure. Thus, molecular farming allows rapid progress from genetic engineering to crop production, and new cash crops producing recombinant proteins are already being commercially exploited. We speculate that as functional genomics teaches us more about the nature of disease, molecular farming will produce many of the protein therapeutics that can remedy it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • An G (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570

    Google Scholar 

  • Arakawa T, Chong DK, Langridge WH (1998) Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nat Biotechnol 16:292–297 [erratum in Nat Biotechnol 1998 16:478]

    CAS  Google Scholar 

  • Artsaenko O, Peisker M, Nieden U zur, Fiedler U, Weiler EW, Müntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J 8:745–750

    Google Scholar 

  • Artsaenko O, Kettig B, Fiedler U, Conrad U, Düring K (1998) Potato tubers as a biofactory for recombinant antibodies. Mol Breeding 4:313–319

    Article  CAS  Google Scholar 

  • Barta A, Sommergruber K, Thompson D, Hartmuth K, Matzke M, Matzke A (1986) The expression of a nopaline synthase human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    CAS  Google Scholar 

  • Benvenuto E, Ordas RJ, Tavazza R, Ancora G, Biocca S, Cattaneo A, Galeffi P (1991) "Phytoantibodies": a general vector for the expression of immunoglobulin domains in transgenic plants. Plant Mol Biol 17:865–874

    CAS  PubMed  Google Scholar 

  • Bird RE, Hardman KD, Jacobson JW, Johnson S, Kaufman BM, Lee SM, Lee T, Pope SH, Riordan GS, Whitlow M (1988) Single-chain antigen-binding proteins. Science 242:423–426

    CAS  PubMed  Google Scholar 

  • Burton D (1995) Phage display. Immunotechnology 1:87–94

    Article  CAS  PubMed  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine N, Ma J, Lerouge P, Faye L (1999) N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9:365–372

    Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147

    CAS  Google Scholar 

  • Castilla J, Pintado B, Sola I, Sanchez-Morgado J, Enjuanes L (1998) Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nat Biotechnol 16:349–354

    CAS  PubMed  Google Scholar 

  • Chargelegue D, Vine ND, Dolleweerd CJ van, Drake PM, Ma JK (2000) A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res 9:187–194

    Article  CAS  PubMed  Google Scholar 

  • Christou P (1993) Particle gun-mediated transformation. Curr Opin Biotechnol 4:135–141

    CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  CAS  PubMed  Google Scholar 

  • Conrad U, Fiedler U, Artsaenko O, Phillips J (1998) High level and stable accumulation of single chain Fv antibodies in plant storage organs. J Plant Physiol 152:708–711

    CAS  Google Scholar 

  • Cramer CL, Weissenborn DL, Oishi KK, Grabau EA, Bennett S, Ponce E, Grabowski GA, Radin DN (1996) Bioproduction of human enzymes in transgenic tobacco. Ann N Y Acad Sci 792:62–71

    CAS  PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  Google Scholar 

  • De Jaeger G, Buys E, Eeckhout D, De Wilde C, Jacobs A, Kapila J, Angenon G, Van Montagu M, Gerats T, Depicker A (1998) High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur J Biochem 259:1–10

    Google Scholar 

  • De Neve M, De Loose M, Jacobs A, Van Houdt H, Kaluza B, Weidle U, Van Montagu M, Depicker A (1993) Assembly of an antibody and its derived antibody fragment in Nicotiana and Arabidopsis. Transgenic Res 2:227–237

    PubMed  Google Scholar 

  • De Wilde C, De Neve M, De Rycke R, Bruyns AM, De Jaeger G, Van Montagu M, Depicker A, Engler G (1996) Intact antigen-binding MAK33 antibody and Fab fragment accumulate in intercellular spaces of Arabidopsis thaliana. Plant Sci 114:233–241

    Article  Google Scholar 

  • Düring K, Hippe S, Kreuzaler F, Schell J (1990) Synthesis and self assembly of a functional monoclonal antibody in transgenic Nicotiana tabacum. Plant Mol Biol 15:281–293

    CAS  PubMed  Google Scholar 

  • Eeckhout D, Fiers E, Sienaert R, Snoeck V, Depicker A, De Jaeger G (2000) Isolation and characterization of recombinant antibody fragments against CDC2a from Arabidopsis thaliana. Eur J Biochem 267:6775–6783

    Article  CAS  PubMed  Google Scholar 

  • Evangelista RL, Kusnadi AR, Howard JA, Nikolov ZL (1998) Process and economic evaluation of the extraction and purification of recombinant beta-glucuronidase from transgenic corn. Biotechnol Prog 14:607–614

    Article  CAS  PubMed  Google Scholar 

  • Fiedler U, Philips J, Artsaenko O, Conrad U (1997) Optimisation of scFv antibody production in transgenic plants. Immunotechnology 3:205–216

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Drossard J, Commandeur U, Schillberg S, Emans N (1999a) Toward Molecular Farming in the future: moving from diagnostic protein and antibody production in microbes to plants. Biotechnol Appl Biochem 30:101–108

    CAS  PubMed  Google Scholar 

  • Fischer R, Liao Y-C, Drossard J (1999b) Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J Immunol Methods 226:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M, Schillberg S (1999c) Expression and characterization of bispecific single chain Fv fragments produced in transgenic plants. Eur J Biochem 262:810–816

    Article  CAS  PubMed  Google Scholar 

  • Francisco JA, Gawlak SL, Miller M, Bathe J, Russell D, Chace D, Mixan B, Zhao L, Fell HP, Siegall CB (1997) Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug Chem 8:708–713

    Article  CAS  PubMed  Google Scholar 

  • Franconi R, Roggero P, Pirazzi P, Arias FJ, Desiderio A, Bitti O, Pashkoulov D, Mattei B, Bracci L, Masenga V, Milne RG, Benvenuto E (1999) Functional expression in bacteria and plants of an scFv antibody fragment against tospoviruses. Immunotechnology 4:189–201

    Article  CAS  PubMed  Google Scholar 

  • Goeddel DV, Heyneker HL, Hozumi T, Arentzen R, Itakura K, Yansura DG, Ross MJ, Miozzari G, Crea R, Seeburg PH (1979a) Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281:544–548

    Google Scholar 

  • Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, Hirose T, Kraszewski A, Itakura K, Riggs AD (1979b) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc Natl Acad Sci USA 76:106–110

    CAS  PubMed  Google Scholar 

  • Gordon K, Lee E, Vitale J, Smith A, Westphal H, Hennighausen L (1987) Production of human tissue plasminogen activator in transgenic mouse milk. Biotechnology 5:1183–1187

    CAS  Google Scholar 

  • Griffiths A, Duncan A (1998) Strategies for selection of antibodies by phage display. Curr Opin Biotechnol 9:102–108

    Article  CAS  PubMed  Google Scholar 

  • Haq TA, Mason HS, Clements JD, Arntzen CJ (1995) Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268:714–716

    CAS  PubMed  Google Scholar 

  • Hendy S, Chen ZC, Barker H, Santa Cruz S, Chapman S, Torrance L, Cockburn W, Whitelam GC (1999) Rapid production of single-chain Fv fragments in plants using a potato virus X episomal vector. J Immunol Methods 231:137–146

    Article  CAS  PubMed  Google Scholar 

  • Hiatt A (1990) Antibodies produced in plants. Nature 344:469–470

    CAS  PubMed  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Google Scholar 

  • Horsch R, Fry JE, Hoffman N, Eicholtz D, Rogers S, Fraley R (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    CAS  Google Scholar 

  • Houdebine LM (1996) Transgenic animals: generation and use. Harwood Academic, Amsterdam

    Google Scholar 

  • Houdebine LM (2000) Transgenic animal bioreactors. Transgenic Res 9:305–320

    Article  CAS  PubMed  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1996) An Agrobacterium mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    Article  Google Scholar 

  • Kapusta J, Modelska A, Figlerowicz M, Pniewski T, Letellier M, Lisowa O, Yusibov V, Koprowski H, Plucienniczak A, Legocki AB (1999) A plant-derived edible vaccine against hepatitis B virus. FASEB J 13:1796–1799

    CAS  PubMed  Google Scholar 

  • Khoudi H, Laberge S, Ferullo JM, Bazin R, Darveau A, Castonguay Y, Allard G, Lemieux R, Vezina LP (1999) Production of a diagnostic monoclonal antibody in perennial alfalfa plants. Biotechnol Bioeng 64:135–143

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • Kumagai MH, Donson J, della-Cioppa G, Grill LK (2000) Rapid, high-level expression of glycosylated rice alpha-amylase in transfected plants by an RNA viral vector. Gene 245:169–174

    Article  CAS  PubMed  Google Scholar 

  • Larrick JW, Yu L, Chen J, Jaiswal S, Wycoff K (1998) Production of antibodies in transgenic plants. Res Immunol 149:603–608

    Article  CAS  PubMed  Google Scholar 

  • Leite A, Kemper EL, Silva MJ da, Luchessi AD, Siloto RMP, Bonaccorsi ED, El-Dorry HF, Arruda P (2000) Expression of correctly processed human growth hormone in seeds of transgenic tobacco plants. Mol Breeding 6:47–53

    Article  CAS  Google Scholar 

  • Lindsey K, Jones MGK (1987) Transient gene expression in electroporated protoplasts and intact cells of sugar beet. Plant Mol Biol 10:43–52

    CAS  Google Scholar 

  • Lo D, Pursel V, Linton P, Sandgren E, Behringer R, Rexroad C, Palmiter R, Brinster R (1991) Expression of mouse IgA by transgenic mice, pigs and sheep. Eur J Immunol 21:1001–1006

    CAS  PubMed  Google Scholar 

  • Ma JK, Lehner T, Stabila P, Fux C, Hiatt A (1994) Assembly of monoclonal antibodies with IgG1 and IgA heavy chain domains in transgenic tobacco plants. Eur J Immunol 24:131–138

    Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, Dolleweerd C van, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    CAS  PubMed  Google Scholar 

  • Ma JK, Hikmat BY, Wycoff K, Vine ND, Chargelegue D, Yu L, Hein MB, Lehner T (1998) Characterization of a recombinant plant monoclonal secretory antibody and preventive immunotherapy in humans. Nat Med 4:601–606

    CAS  PubMed  Google Scholar 

  • Magnuson NS, Linzmaier PM, Reeves R, An G, HayGlass K, Lee JM (1998) Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expression Purification 13:45–52

    Article  CAS  PubMed  Google Scholar 

  • Martial JA, Hallewell RA, Baxter JD, Goodman HM (1979) Human growth hormone: complementary DNA cloning and expression in bacteria. Science 205:602–607

    CAS  PubMed  Google Scholar 

  • Mason HS, Arntzen CJ (1995) Transgenic plants as vaccine production systems. Trends Biotechnol 13:388–392

    Article  CAS  PubMed  Google Scholar 

  • Mason HS, Lam DM, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci USA 89:11745–11749

    CAS  PubMed  Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tusé D, Levy S, Levy R (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA 96:703–708

    Article  CAS  PubMed  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnology 13:1484–1487

    Google Scholar 

  • Moloney MM, Holbrook LA (1997) Subcellular targeting and purification of recombinant proteins in plant production systems. Biotechnol Genet Eng Rev 14:321–336

    CAS  PubMed  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48:899–907

    CAS  PubMed  Google Scholar 

  • Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnology 10:790–794

    CAS  PubMed  Google Scholar 

  • Palmiter R, Brinster R, Hammer R, Trumbauer M, Rosenfeld M, Birnberg N, Evans R (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611–615

    CAS  PubMed  Google Scholar 

  • Peeters K. De Wilde C, Depicker A (2001) Highly efficient targeting and accumulation of a F(ab) fragment within the secretory pathway and apoplast of Arabidopsis thaliana. Eur J Biochem 268:4251–4260

    Article  CAS  PubMed  Google Scholar 

  • Perrin Y, Vaquero C, Gerrard I, Sack M, Drossard J, Stöger E, Christou P, Fischer R (2000) Transgenic pea seeds as bioreactors for the production of single chain Fv antibody fragment (scFV) used in cancer diagnosis and therapy. Mol Breeding 6:345–352

    Article  CAS  Google Scholar 

  • Pollock D, Kutzko J, Birck-Wilson E, Williams J, Echelard Y, Meade H (1999) Transgenic milk as a method for the production of recombinant antibodies. J Immunol Methods 231:147–157

    Article  CAS  PubMed  Google Scholar 

  • Porta C, Lomonossoff GP (1996) Use of viral replicons for the expression of genes in plants. Mol Biotech 5:209–221

    CAS  Google Scholar 

  • Rudolph N (1999) Biopharmaceutical production in transgenic livestock. TIBTECH 17:367–374

    Article  CAS  Google Scholar 

  • Russell D, Fuller J (2000) Method for producing antibodies in plant cells. Monsanto, St Louis, Mo.

  • Saalbach I, Giersberg M, Conrad U (2001) High-level expression of a single-chain Fv fragment (scFv) antibody in transgenic pea seeds. J Plant Physiol 158:529–533

    CAS  Google Scholar 

  • Schillberg S, Zimmermann S, Voss A, Fischer R (1999) Apoplastic and cytosolic expression of full-size antibodies and antibody fragments in Nicotiana tabacum. Transgenic Res 8:255–263

    Article  CAS  PubMed  Google Scholar 

  • Scholthof H, Scholthof K, Jackson A (1996) Plant virus gene vectors for transient expression of foreign proteins in plants. Annu Rev Phytopathol 34:299–323

    Article  CAS  Google Scholar 

  • Sharp J, Doran P (2001) Characterization of monoclonal antibody fragments produced by plant cells. Biotechnol Bioeng 73:338–346

    Google Scholar 

  • Sheen S (1983) Biomass and chemical composition of tobacco plants under high density growth. Beitr Tabakforsch Int 12:35–42

    CAS  Google Scholar 

  • Spiegel H, Schillberg S, Sack M, Holzem A, Nähring J, Monecke M, Liao Y-C, Fischer R (1999) Expression of antibody fusion proteins in the cytoplasm and ER of plant cells. Plant Sci 149:63–71

    Article  CAS  Google Scholar 

  • Staub J, Garcia B, Graves J, Hajdukiewicz P, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll J, Spatola L, et al (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature Biotechnol 18:333–338

    Article  CAS  Google Scholar 

  • Stöger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    PubMed  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366:469–472

    CAS  PubMed  Google Scholar 

  • Torres E, Vaquero C, Nicholson L, Sack M, Stöger E, Drossard J, Christou P, Fischer R (1999) Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res 8:441–449

    CAS  PubMed  Google Scholar 

  • Vaquero C, Sack M, Chandler J, Drossard J, Schuster F, Schillberg S, Fischer R (1999) Transient expression of a tumor-specific single chain fragment and a chimeric antibody in tobacco leaves. Proc Natl Acad Sci USA 96:11128–11133

    Article  CAS  PubMed  Google Scholar 

  • Verch T, Yusibov V, Koprowski H (1998) Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J Immunol Methods 220:69–75

    Article  CAS  PubMed  Google Scholar 

  • Verwoerd TC, Paridon PA van, Ooyen AJJ van, Lent JWM van, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109:1199–1205

    Article  CAS  PubMed  Google Scholar 

  • Voss A, Niersbach M, Hain R, Hirsch H, Liao Y, Kreuzaler F, Fischer R (1995) Reduced virus infectivity in N. tabacum secreting a TMV-specific full size antibody. Mol Breeding 1:39–50

    CAS  Google Scholar 

  • Wall R (1999) Biotechnology for the production of modified and innovative animal products: transgenic livestock bioreactors. Livestock Prod Sci 59:243–255

    Article  Google Scholar 

  • Walmsley A, Arntzen C (2000) Plants for delivery of edible vaccines. Curr Opin Biotechnol 11:126–129

    Article  CAS  PubMed  Google Scholar 

  • Whitelam GC, Cockburn W, Owen MR (1994) Antibody production in transgenic plants. Biochem Soc Trans 22:940–944

    CAS  PubMed  Google Scholar 

  • Winter G, Milstein C (1991) Man-made antibodies. Nature 349:293–299

    CAS  PubMed  Google Scholar 

  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  CAS  PubMed  Google Scholar 

  • Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ (1998) A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nat Biotechnol 16:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Ziegler M, Thomas S, Danna K (2000) Accumulation of a thermostable endo-1,4-b-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breeding 6:37–46

    Article  CAS  Google Scholar 

  • Zimmermann S, Schillberg S, Liao YC, Fischer R (1998) Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol Breeding 4:369–379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schillberg, S., Fischer, R. & Emans, N. 'Molecular farming' of antibodies in plants. Naturwissenschaften 90, 145–155 (2003). https://doi.org/10.1007/s00114-002-0400-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-002-0400-5

Keywords

Navigation