Skip to main content

Advertisement

Log in

Stressfrakturen im militärischen Kontext

Stress fractures in the military context

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Soldaten sind berufsbedingt, insbesondere als Rekruten, durch das Marschieren und exzessiven Laufsport deutlich erhöhten repetitiven Belastungsmustern am Fuß ausgesetzt. Dies kann zu militärspezifischen Stressfrakturen der Mittelfußknochen führen – den Marschfrakturen. Behandlung und Prävention dieser Frakturen haben im militärischen Kontext aufgrund ihrer Auswirkungen auf Verwendungsfähigkeit und Behandlungskosten eine besondere Bedeutung. Eine einheitliche Klassifikation dieser Frakturen besteht bislang nicht.

Fragestellung

Übersichtsarbeit über Stressfrakturen im militärischen Kontext mit Darstellung der Inzidenz, Risikofaktoren, Klassifikationen, Therapie- und Präventionsmöglichkeiten.

Material und Methode

Es erfolgte die PubMed®-basierte Auswertung der aktuellen Literatur über Stressfrakturen im militärischen Kontext und die Diskussion der Ergebnisse mit Fokus auf spezifisch militärmedizinische Behandlungsmöglichkeiten.

Ergebnisse

Es gibt unterschiedliche Klassifikationen, um Stressfrakturen einzuteilen; die bekannteste ist die MRT-basierte 4‑stufige Einteilung. Präventions- und Therapiemöglichkeiten sind vielfältig, aber bislang unzureichend validiert.

Diskussion

Militärspezifische Stressfrakturen sollten nach einer 4‑stufigen und MRT-basierten Klassifikation eingeteilt werden. Die Therapieoptionen umfassen sowohl konservative als auch operative Maßnahmen und sollten unter Berücksichtigung des individuellen Anforderungsprofils eingesetzt werden. Präventionsmaßnahmen kommt im militärischen Kontext eine tragende Rolle zu. Sie umfassen die Anpassung von Screeningtools, Ausbildung und Ausrüstung und bedürfen einer kontinuierlichen Evaluation und Weiterentwicklung.

Abstract

Background

Soldiers, especially as recruits, are exposed to significantly elevated stress patterns of the foot due to occupation-related marching and excessive running. This can lead to military-specific stress fractures of the metatarsals, i.e., marching fractures. The treatment and prevention of stress fractures are of particular importance in the military context due to the impact on operational capability and treatment costs. A uniform classification of these fractures does not yet exist.

Objective

Review of stress fractures in the military setting with presentation of the incidence, risk factors, classification, treatment and prevention possibilities.

Material and methods

A PubMed®-based review of the current literature on stress fractures in the military context was conducted and the results were discussed with a focus on specific military medical treatment options.

Results

There are several possibilities to classify stress fractures, the most well-known being a 4-level magnetic resonance imaging (MRI)-based classification. Prevention and treatment possibilities are multifaceted but so far insufficiently validated.

Conclusion

Military-specific stress fractures should be grouped according to a 4-level and MRI-based classification. The treatment options include both conservative and surgical measures and should be implemented taking the patient’s individual requirements into account. Preventive measures play a key role in the military context. They include the adaptation of screening tools, training and equipment and require continuous evaluation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Abbott A, Wang C, Stamm M, Mulcahey MK (2023) Part II: risk factors for stress fractures in female military recruits. Mil Med 188:93–99

    Article  PubMed  Google Scholar 

  2. Armstrong RA, Davey T, Allsopp AJ, Lanham-New SA, Oduoza U, Cooper JA, Montgomery HE, Fallowfield JL (2020) Low serum 25-hydroxy Vitamin D status in the pathogenesis of stress fractures in military personnel: an evidenced link to support injury risk management. PLoS ONE 15(3):e229638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon S, Nunns M, House C, Rice H, Mostazir M, Stiles V, Davey T, Fallowfield J, Allsopp A (2019) Prospective study of biomechanical risk factors for second and third metatarsal stress fractures in military recruits. J Sci Med Sport 22:135–139

    Article  PubMed  Google Scholar 

  4. Dobson JA, Riddiford-Harland DL, Bell AF, Steele JR (2017) Work boot design affects the way workers walk: A systematic review of the literature. Appl Ergon 61:53–68

    Article  PubMed  Google Scholar 

  5. Fedgo AA, Stahlman S (2020) Increased risk for stress fractures and delayed healing with NSAID receipt, U.S. Armed Forces, 2014–2018. MSMR 27:18–25

    PubMed  Google Scholar 

  6. Fogleman SA, Janney C, Cialdella-Kam L, Flint JH (2022) Vitamin D deficiency in the military: it’s time to act! Mil Med 187:144–148

    Article  PubMed  Google Scholar 

  7. Foti G, Serra G, Iacono V, Marocco S, Bertoli G, Gori S, Zorzi C (2021) Identification of non-traumatic bone marrow oedema: The pearls and pitfalls of dual-energy ct (dect). Tomography 7:387–396

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ganguly A, Warner J, Aniq H (2018) Central metatarsalgia and walking on pebbles: Beyond morton neuroma. AJR Am J Roentgenol 210:821–833

    Article  PubMed  Google Scholar 

  9. Greeves JP, Beck B, Nindl BC, O’Leary TJ (2023) Current risks factors and emerging biomarkers for bone stress injuries in military personnel. J Sci Med Sport 26:S14–S21

    Article  PubMed  Google Scholar 

  10. Griffis CE, Pletta AM, Mutschler C, Ahmed AE, Lorimer SD (2022) Proportion of navy recruits diagnosed with symptomatic stress fractures during training and monetary impact of these injuries. Clin Orthop Relat Res 480:2111–2119

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hackenbroch C, Kreitner K‑F (2023) Stress reactions and stress fractures. Radiologie 63:259–267

    Article  PubMed  Google Scholar 

  12. Henningsen A, Hinz P, Lüdde R, Ekkernkamp A, Rosenbaum D (2006) Retrospective analysis of March fractures in the German Armed Forces in the years 1998 to 2000. Z Orthop Ihre Grenzgeb 144:502–506

    Article  CAS  PubMed  Google Scholar 

  13. Hoenig T, Eissele J, Strahl A, Popp KL, Stürznickel J, Ackerman KE, Hollander K, Warden SJ, Frosch KH, Tenforde AS, Rolvien T (2023) Return to sport following low-risk and high-risk bone stress injuries: A systematic review and meta-analysis. Br J Sports Med 57:427–432

    Article  PubMed  Google Scholar 

  14. Hoffman DF, Adams E, Bianchi S (2015) Ultrasonography of fractures in sports medicine. Br J Sports Med 49:152–160

    Article  PubMed  Google Scholar 

  15. Hossain M, Clutton J, Ridgewell M, Lyons K, Perera A (2015) Stress fractures of the foot. Clin Sports Med 34:769–790

    Article  PubMed  Google Scholar 

  16. Hughes JM, McKinnon CJ, Taylor KM, Kardouni JR, Bulathsinhala L, Guerriere KI, Popp KL, Bouxsein ML, Proctor SP, Matheny RW (2019) Nonsteroidal anti-inflammatory drug prescriptions are associated with increased stress fracture diagnosis in the US Army population. J Bone Miner Res 34:429–436

    Article  CAS  PubMed  Google Scholar 

  17. Jungmann PM, Schaeffeler C (2023) Bone stress injuries at the ankle and foot. Semin Musculoskelet Radiol 27:283–292

    Article  PubMed  Google Scholar 

  18. Kahanov L, Eberman L, Games K, Wasik M (2015) Diagnosis, treatment, and rehabilitation of stress fractures in the lower extremity in runners. Open Access J Sports Med 6:87

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee S, Saifuddin A (2019) Magnetic resonance imaging of subchondral insufficiency fractures of the lower limb. Skelet Radiol 48:1011–1021

    Article  Google Scholar 

  20. Lee SYS, Tan TJ, Yan YY (2019) Fracture of a bipartite medial Hallux sesamoid masquerading as a tripartite variant: a case report and review of the literature. J Foot Ankle Surg 58:980–983

    Article  PubMed  Google Scholar 

  21. Lennox GM, Wood PM, Schram B, Canetti EFD, Simas V, Pope R, Orr R (2022) Non-modifiable risk factors for stress fractures in military personnel undergoing training: a systematic review. Int J Environ Res Public Health 19:422

    Article  Google Scholar 

  22. Mandell JC, Khurana B, Smith SE (2017) Stress fractures of the foot and ankle, part 1: biomechanics of bone and principles of imaging and treatment. Skelet Radiol 46:1021–1029

    Article  Google Scholar 

  23. Mandell JC, Khurana B, Smith SE (2017) Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skelet Radiol 46:1165–1186

    Article  Google Scholar 

  24. May T, Marra J, Leu A, Torbert D, Vanwagner T, Alexander Z, Rainie-Lobacz R, Ryan M (2021) Accuracy of the tuning fork test for determination of presence and location of tibial stress fractures in a military training population. Mil Med 186:733–736

    Article  PubMed  Google Scholar 

  25. McInnis KC, Ramey LN (2016) High-risk stress fractures: diagnosis and management. PM R 8:S113–S124

    Article  PubMed  Google Scholar 

  26. Milgrom C, Giladi M, Chisin R, Dizian R (1985) The long-term followup of soldiers with stress fractures. Am J Sports Med 13:398–400

    Article  CAS  PubMed  Google Scholar 

  27. Nunns M, Stiles V, Dixon S (2012) The effects of standard issue Royal Marine recruit footwear on risk factors associated with third metatarsal stress fractures. Footwear Sci 4:59–70

    Article  Google Scholar 

  28. Oliva XM, Voegeli AV (2020) Aseptic (avascular) bone necrosis in the foot and ankle. EFORT Open Rev 5:684–690

    Article  Google Scholar 

  29. Pihlajamäki H, Parviainen M, Kyröläinen H, Kautiainen H, Kiviranta I (2019) Regular physical exercise before entering military service may protect young adult men from fatigue fractures. BMC Musculoskelet Disord 20:126

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reis JP, Trone DW, Macera CA, Rauh MJ (2007) Factors associated with discharge during marine corps basic training. Mil Med 172:936–941

    Article  PubMed  Google Scholar 

  31. Romani WA, Gieck JH, Perrin DH, Saliba EN, Kahler DM (2002) Mechanisms and Management of Stress Fractures in Physically Active Persons. J Athl Train 37(3):306–314

  32. Scott SJ, Feltwell DN, Knapik JJ, Barkley CB, Hauret KG, Bullock SH, Evans RK (2012) A multiple intervention strategy for reducing femoral neck stress injuries and other serious overuse injuries in U.S. Army Basic Combat Training. Mil Med 177:1081–1089

    Article  PubMed  Google Scholar 

  33. Shaffer RA, Brodine SK, Almeida SA, Williams KM, Ronaghy S (1999) Use of simple measures of physical activity to predict stress fractures in young men undergoing a rigorous physical training program. Am J Epidemiol 149:236–242

    Article  CAS  PubMed  Google Scholar 

  34. Shaw KA, Hattaway J, Villani N, Barkley C, O’Brien F, Jackson KL, Tucker M (2022) Surgically treated femoral neck stress fractures are likely to result in military separation during basic combat training. Clin Orthop Relat Res 480:1684–1691

    Article  PubMed  PubMed Central  Google Scholar 

  35. Warden SJ, Hoenig T, Sventeckis AM, Ackerman KE, Tenforde AS (2023) Not all bone overuse injuries are stress fractures: it is time for updated terminology. Br J Sports Med 57:76–77

    Article  PubMed  Google Scholar 

  36. Whittle RS (2022) Distance travelled by military recruits during basic training is a significant risk factor for lower limb overuse injury. BMJ Mil Health 168:343–348

    Article  PubMed  Google Scholar 

  37. Winson DMG, Miller DLH, Winson IG (2020) Foot injuries, playing surface and shoe design: should we be thinking more about injury prevention. Foot Ankle Surg 26:597–600

    Article  PubMed  Google Scholar 

  38. Wood AM, Hales R, Keenan A, Moss A, Chapman M, Davey T, Nelstrop A (2014) Incidence and time to return to training for stress fractures during military basic training. J Sports Med 2014:282980

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ring.

Ethics declarations

Interessenkonflikt

M. Ring, B. Friemert, C. Hackenbroch und G. Achatz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Thomas Mittlmeier, Rostock

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ring, M., Friemert, B., Hackenbroch, C. et al. Stressfrakturen im militärischen Kontext. Unfallchirurgie 126, 856–862 (2023). https://doi.org/10.1007/s00113-023-01375-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-023-01375-0

Schlüsselwörter

Keywords

Navigation