Skip to main content

Advertisement

Log in

Zeitgemäße bildgebende Untersuchung bei (vermuteter) Stressfraktur

Contemporary imaging examinations for (suspected) stress fractures

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Die Stressfrakturen gehören zur Gruppe der atraumatischen Frakturen. Ihnen liegt eine gering einwirkende und repetitive Belastung zugrunde, und unter physiologischen Umständen würde keine Fraktur zustande kommen. Die konventionelle Röntgenuntersuchung ist weiterhin die initiale bildgebende Untersuchung, wenn der Verdacht auf eine Stressfraktur besteht. Die MRT ist hingegen der Goldstandard und dient u. a. zum Ausschluss anderer pathologischer Veränderungen. Die CT soll hinzugezogen werden, wenn der MRT-Befund unklar ist. Neue Techniken wie die „dual-energy computed tomography“ (DECT) und das „magnetic resonance bone imaging“ (MR-Bone) sollten zukünftig in der Praxis häufiger angewendet werden und an Bedeutung für die korrekte Diagnosestellung gewinnen.

Abstract

Stress fractures belong to the group of atraumatic fractures. A low-impact and repetitive load is the underlying cause and no fracture would occur under physiological circumstances. The conventional X‑ray examination remains the initial imaging modality when a stress fracture is suspected. In contrast, magnetic resonance imaging (MRI) is the gold standard and is also used to rule out other pathological changes. Computed tomography (CT) should be included if the MRI findings are unclear. New techniques, such as dual energy computed tomography (DECT) and magnetic resonance bone imaging (MR bone) should be used more frequently in practice in the future and become increasingly more important for the correct diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Pentecost RL, Murray RA, Brindley HH (1964) Fatigue, insufficiency, and pathologic fractures. JAMA 187:1001–1004

    Article  CAS  PubMed  Google Scholar 

  2. Shane E, Abrahamseb B, Adler R et al (2014) Atypical subtrochanteric and diaphyseal femoral fractures: second report of a task force of the American society for bone and mineral research. J Bone Miner Res 29:1–23

    Article  PubMed  Google Scholar 

  3. Palmer W, Bancroft L, Bonar F et al (2020) Glossary of terms for musculoskeletal radiology. Skelet Radiol 49(1):1–33

    Article  Google Scholar 

  4. Thierfelder KM, Langner S, Mittlmeier T, Weber MA (2023) Spezielle Aspekte bei Stressfrakturen. In: Weber MA, Mittlmeier T (Hrsg) Kompendium bildgebende Frakturdiagnostik. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-662-63602-2_5

    Chapter  Google Scholar 

  5. Bennell KL, Brukner PD (1997) Epidemiology and site specificity of stress fractures. Clin Sports Med 16:179–196

    Article  CAS  PubMed  Google Scholar 

  6. Resnick D (1996) Bone and joint imaging, 2. Aufl. WB Saunders, Philadelphia

    Google Scholar 

  7. Aicale R, Tarantino D, Maffulli N et al (2018) Overuse injuries in sport: a comprehensive overview. J Orthop Surg Res 13:1–11

    Article  Google Scholar 

  8. Mandell JC, Khurana B, Smith SE (2017a) Stress fractures of the foot and ankle, part 1: biomechanics of boneand principles of imaging and treatment. Skelet Radiol 46:1012–1029

    Google Scholar 

  9. Mandell JC, Khurana B, Smith SE (2017b) Stress fractures of the foot and ankle, part 2: site-specific etiology, imaging, and treatment, and differential diagnosis. Skelet Radiol 46:1165–1186

    Article  Google Scholar 

  10. Marshall RA, Mandell JC, Weaver MJ (2018) Imaging features and management of stress, atypical and pathologic fractures. Radiographics 38:2173–2192

    Article  PubMed  Google Scholar 

  11. Sayani J, Stott P (2020) Stress fractures: aetiology and management principles. Orthop Trauma 34(3):124–130

    Article  Google Scholar 

  12. Boksh K et al (2021) Stress Fractures: A Growing Concern during the COVID-19 Pandemic. J Foot Ankle Surg (Asia Pacific) 8(2):80–85

    Article  Google Scholar 

  13. Mehta N et al (2022) Initial Impact of the COVID-19 Pandemic on a US Orthopaedic Foot and Ankle Clinic. Foot Ankle Orthop. https://doi.org/10.1177/24730114221115689

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bath K, Steinhagen I (2019) Stress fracture of athletes as a cause of groin pain. Radiologe 59:204–211

    Article  CAS  PubMed  Google Scholar 

  15. Lefere M, Demeyere A, Vanhoenacker F (2021) Overuse bone trauma and stress fractures. In: Vanhoenacker FM, Maas M, Gielen JL (Hrsg) Imaging of orthopedic sports injuries. Medical radiology. Springer, Cham https://doi.org/10.1007/174_2020_240

    Chapter  Google Scholar 

  16. Hauenstein C, Stuhldreier G (2023) Spezielle Aspekte der Frakturen bei Kindern und Jugendlichen sowie Fraktursonografie. In: Weber MA, Mittlmeier T (Hrsg) Kompendium bildgebende Frakturdiagnostik. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-662-63602-2_2

    Chapter  Google Scholar 

  17. Wright AA et al (2016) Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med 44(1):255–263

    Article  PubMed  Google Scholar 

  18. Wünnemann F, Weber MA, Rehnitz C (2023) Spezielle Aspekte bei pathologischen Frakturen. In: Weber MA, Mittlmeier T (Hrsg) Kompendium bildgebende Frakturdiagnostik. Springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-662-63602-2_4

    Chapter  Google Scholar 

  19. Kijowski R et al (2012) Validation of MRI classification system for tibial stress injuries. AJR Am J Roentgenol 198:898–884

    Article  Google Scholar 

  20. Fredericson M et al (1995) Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 23:472–481

    Article  CAS  PubMed  Google Scholar 

  21. Chong LR et al (2021) 3D MRI with CT-like bone contrast – an overview of current approaches and practical clinical implementation. Eur J Radiol 143:109915

    Article  PubMed  Google Scholar 

  22. Schwaiger BJ et al (2021) CT-like images based on T1 spoiled gradient-echo and ultra-short echo time MRI sequences for the assessment of vertebral fractures and degenerative bone changes of the spine. Eur Radiol 31(7):4680–4689

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carl M et al (2021) oZTEo: enabling MR as a one-stop shop for soft tissue and bone imaging. https://signapulse.gehealthcare.com/ozteo-enabling-mr-as-a-one-stop-shop-for-soft-tissue-and-bone-imaging. Zugegriffen: 30. Mai 2023

  24. Mallinson P et al (2016) Dual-energy CT for the musculoskeletal system. Radiology 281(3):690–707

    Article  PubMed  Google Scholar 

  25. Karaca L et al (2016) The feasibility of dual-energy CT in differentiation of vertebral compression fractures. BJR 89:1057

    Article  Google Scholar 

  26. Palm H‑G et al (2020) Dual-energy CT as an innovative method for diagnosing fragility fractures of the pelvic ring: a retrospective comparison with MRI as the gold standard. Arch Orthop Trauma Surg 140(4):473–480

    Article  PubMed  Google Scholar 

  27. Foti G et al (2020) Bone marrow edema around the hip in non-traumatic pain: dual-energy CT vs MRI. Eur Radiol 30(7):4098–4106

    Article  PubMed  Google Scholar 

  28. Nye NS et al (2020) Evaluating an algorithm and clinical prediction rule for diagnosis of bone stress injuries. Sports Health 12(5):449–455

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ficek K et al (2020) Stress fractures in uncommon location: Six case reports and review of the literature. World J Clin Cases 8(18):4135–4150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bustos AO et al (2021) Overuse-Related Injuries of the Musculoskeletal System: Systematic Review and Quantitative Synthesis of Injuries, Locations, Risk Factors and Assessment Techniques. Sensors 21(7):2438

    Article  Google Scholar 

Download references

Danksagung

Wir danken Herrn Kilian Solty, GE HealthCare Deutschland für die Implementierung der Bone-MR-Techniken und für die Durchsicht des Manuskripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Arévalo Hernández.

Ethics declarations

Interessenkonflikt

A. Arévalo Hernández, T. Mittlmeier und M.-A. Weber geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Thomas Mittlmeier, Rostock

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arévalo Hernández, A., Mittlmeier, T. & Weber, MA. Zeitgemäße bildgebende Untersuchung bei (vermuteter) Stressfraktur. Unfallchirurgie 126, 831–838 (2023). https://doi.org/10.1007/s00113-023-01358-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-023-01358-1

Schlüsselwörter

Keywords

Navigation