Skip to main content

Advertisement

Log in

Neue Technologien und Robotik

New technologies and robotics

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Immer diffizilere Computer- und Elektromotorentechnik ermöglicht den zunehmenden Einsatz und Ausbau robotergestützter Systeme in der unfallchirurgischen Rehabilitation. Die derzeit verfügbaren Devices finden jedoch selten eine flächendeckende Anwendung, sondern werden häufig im Rahmen von Pilotprojekten/-studien eingesetzt. Unterschiedliche technologische Ansätze wie u. a. „exoskeletale Systeme“, „functional electrical stimulation“, „soft robotics“, „neurobotics“ und „brain-machine interface“ werden genutzt und kombiniert, um die Kommunikation zwischen z. B. residualer Muskulatur oder Hirnströmen zu lesen, zu verarbeiten, auf das ausführende Device zu übertragen und die gewünschte Ausführung zu ermöglichen.

Die größte Evidenz besteht derzeit für exoskeletale Systeme mit unterschiedlichen Wirkmechanismen im Rahmen der Gang- und Standrehabilitation bei querschnittsgelähmten PatientInnen. Ihr Einsatz spielt aber auch eine Rolle bei der Rehabilitation hüftgelenknaher Frakturen oder endoprothetischer Versorgung. „single joint systeme“ werden ebenfalls im Rahmen der Rehabilitation funktionseingeschränkter Extremitäten, z. B. nach Knieprothesenimplantation, erprobt. An dieser Stelle ist die derzeitige Datenlage jedoch noch zu gering, um eine eindeutige Aussage über den Nutzen dieser Technologien im unfallchirurgischen „Kerngeschäft“ der Rehabilitation nach Frakturen und anderen Gelenkverletzungen treffen zu können.

Für die Rehabilitation nach Extremitätenamputation ist neben der Weiterentwicklung myoelektrischer Prothesen die derzeitige Entwicklung „fühlender“ Prothesen von hohem Interesse. Der 3D-Druck spielt bei der Herstellung individualisierter Devices ebenfalls eine Rolle.

Aufgrund des derzeitigen Fortschritts der künstlichen Intelligenz in allen Bereichen sind bahnbrechende Weiterentwicklungen und flächendeckende Anwendungsmöglichkeiten in der Rehabilitation unfallchirurgischer PatientInnen zu erwarten.

Abstract

The development of increasingly more complex computer and electromotor technologies enables the increasing use and expansion of robot-assisted systems in trauma surgery rehabilitation; however, the currently available devices are rarely comprehensively applied but are often used within pilot projects and studies. Different technological approaches, such as exoskeletal systems, functional electrical stimulation, soft robotics, neurorobotics and brain-machine interfaces are used and combined to read and process the communication between, e.g., residual musculature or brain waves, to transfer them to the executing device and to enable the desired execution.

Currently, the greatest amount of evidence exists for the use of exoskeletal systems with different modes of action in the context of gait and stance rehabilitation in paraplegic patients; however, their use also plays a role in the rehabilitation of fractures close to the hip joint and endoprosthetic care. So-called single joint systems are also being tested in the rehabilitation of functionally impaired extremities, e.g., after knee prosthesis implantation. At this point, however, the current data situation is still too limited to be able to make a clear statement about the use of these technologies in the trauma surgery “core business” of rehabilitation after fractures and other joint injuries.

For rehabilitation after limb amputation, in addition to the further development of myoelectric prostheses, the current development of “sentient” prostheses is of great interest. The use of 3D printing also plays a role in the production of individualized devices.

Due to the current progress of artificial intelligence in all fields, ground-breaking further developments and widespread application possibilities in the rehabilitation of trauma patients are to be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Abbreviations

ADL:

„Activities of daily living“

AFO:

„Ankle foot orthosis“

BCI:

„Brain-computer inferface“

CARR:

„Compliant ankle rehabilitation robot“

CPM:

„Continuous passive motion“

CRPS:

„Complex regional pain syndrome“

DASH Score:

Disabilities of Arm, Shoulder and Hand Score

EMG:

Elektromyographie

FAS:

Fatigue Assessment Scale

FES:

„Functional electrical stimulation“

KI:

Künstliche Intelligenz

LEMS:

Lower Extremity Motor Scale

MPK:

Mikroprozessorgesteuerte Prothesensysteme

NMES:

„Neuromuscular electrical stimulation“

SCO:

„Stance phase control orthosis“

SHT:

Schädel-Hirn-Trauma

SR:

„Soft robotics“

SSCO:

„Stance and swing phase control orthosis“

TEPVR:

Virtual Reality

Literatur

  1. Aach M, Cruciger O, Sczesny-Kaiser M et al (2014) Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J 14:2847–2853

    Article  Google Scholar 

  2. Aach M, Meindl RC, Gessmann J et al (2015) Exoskeletons for rehabilitation of patients with spinal cord injuries. Options and limitations. Unfallchirurg 118:130–137

    Article  CAS  Google Scholar 

  3. Ajiboye AB, Willett FR, Young DR et al (2017) Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389:1821–1830

    Article  Google Scholar 

  4. Albanese GA, Taglione E, Gasparini C et al (2021) Efficacy of wrist robot-aided orthopedic rehabilitation: a randomized controlled trial. J Neuroeng Rehabil 18:130

    Article  Google Scholar 

  5. Benner S, Tepper O, Horas K et al (2019) Exoprothesenversorgung der oberen Extremität. Trauma Berufskrankh 21:55–60

    Article  Google Scholar 

  6. Biasiucci A, Leeb R, Iturrate I et al (2018) Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun 9:2421

    Article  CAS  Google Scholar 

  7. Birch N, Graham J, Priestley T et al (2017) Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid. J Neuroeng Rehabil 14:60

    Article  Google Scholar 

  8. Bockbrader M, Annetta N, Friedenberg D et al (2019) Clinically significant gains in skillful grasp coordination by an individual with tetraplegia using an implanted brain-computer interface with forearm transcutaneous muscle stimulation. Arch Phys Med Rehabil 100:1201–1217

    Article  Google Scholar 

  9. Bockbrader MA, Francisco G, Lee R et al (2018) Brain computer interfaces in rehabilitation medicine. PM R 10:S233–S243

    Article  Google Scholar 

  10. Brinkemper A (2019) Ganganalyse bei rückenmarksverletzten Patienten vor und nach exoskelettalem Training. https://nbn-resolving.org/urn:nbn:de:hbz:464-20191025-111901-8https://doi.org/10.17185/duepublico/70627. Zugegriffen: 9. Okt. 2022

  11. Brinkemper A, Aach M, Grasmucke D et al (2021) Improved physiological gait in acute and chronic SCI patients after training with wearable cyborg hybrid assistive limb. Front Neurorobot 15:723206

    Article  Google Scholar 

  12. Brinkemper A, Grasmucke D, Yilmaz E et al (2021) Influence of locomotion therapy with the wearable cyborg HAL on bladder and bowel function in acute and chronic SCI patients. Global Spine J. https://doi.org/10.1177/21925682211003851

    Article  Google Scholar 

  13. Cardoso LRL, Bochkezanian V, Forner-Cordero A et al (2022) Soft robotics and functional electrical stimulation advances for restoring hand function in people with SCI: a narrative review, clinical guidelines and future directions. J Neuroeng Rehabil 19:66

    Article  Google Scholar 

  14. Carlson T, Millan JDR (2013) Brain-controlled wheelchairs: a robotic architecture. IEEE Robotics Autom Mag 20:65–73

    Article  Google Scholar 

  15. Carson RG, Buick AR (2021) Neuromuscular electrical stimulation-promoted plasticity of the human brain. J Physiol 599:2375–2399

    Article  CAS  Google Scholar 

  16. Contreras-Vidal JL, Grossman RG (2013) NeuroRex: a clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton. Annu Int Conf IEEE Eng Med Biol Soc 2013:1579–1582

    Google Scholar 

  17. Cruciger O, Tegenthoff M, Schwenkreis P et al (2014) Locomotion training using voluntary driven exoskeleton (HAL) in acute incomplete SCI. Neurology 83:474

    Article  Google Scholar 

  18. Dickmann T, Wilhelm NJ, Glowalla C et al (2021) An adaptive mechatronic exoskeleton for force-controlled finger rehabilitation. Front Robot AI 8:716451

    Article  Google Scholar 

  19. Duffy EI, Garry J, Talbot L et al (2018) A pilot study assessing the spiritual, emotional, physical/environmental, and physiological needs of mechanically ventilated surgical intensive care unit patients via eye tracking devices, head nodding, and communication boards. Trauma Surg Acute Care Open 3:e180

    Article  Google Scholar 

  20. Duvinage M, Castermans T, Jiménez-Fabián R et al (2012) A five-state P300-based foot lifter orthosis: proof of concept. In: 2012 ISSNIP biosignals and biorobotics conference: biosignals and robotics for better and safer living (BRC)

    Google Scholar 

  21. Ernst M, Altenburg B, Schmalz T et al (2022) Benefits of a microprocessor-controlled prosthetic foot for ascending and descending slopes. J NeuroEngineering Rehabil 19:1–12

    Article  Google Scholar 

  22. Evans N, Hartigan C, Kandilakis C et al (2015) Acute cardiorespiratory and metabolic responses during exoskeleton-assisted walking overground among persons with chronic spinal cord injury. Top Spinal Cord Inj Rehabil 21:122–132

    Article  Google Scholar 

  23. Fujikawa T, Takahashi S, Shinohara N et al (2022) Early postoperative rehabilitation using the hybrid assistive limb (HAL) lumbar type in patients with hip fracture: a pilot study. Cureus 14:e22484

    Google Scholar 

  24. Goto K, Morishita T, Kamada S et al (2017) Feasibility of rehabilitation using the single-joint hybrid assistive limb to facilitate early recovery following total knee arthroplasty: a pilot study. Assist Technol 29:197–201

    Article  Google Scholar 

  25. Grasmucke D, Zieriacks A, Jansen O et al (2017) Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled hybrid assistive limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level. Neurosurg Focus 42:E15

    Article  Google Scholar 

  26. Hahn A, Bueschges S, Prager M et al (2021) The effect of microprocessor controlled exo-prosthetic knees on limited community ambulators: systematic review and meta-analysis. Disabil Rehabil. https://doi.org/10.1080/09638288.2021.1989504

    Article  Google Scholar 

  27. Jang YC, Park HK, Han JY et al (2019) Cardiopulmonary function after robotic exoskeleton-assisted over-ground walking training of a patient with an incomplete spinal cord injury: case report. Medicine 98:e18286

    Article  Google Scholar 

  28. Kaufmann T, Herweg A, Kubler A (2014) Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. J Neuroeng Rehabil 11:7

    Article  Google Scholar 

  29. Kotani N, Morishita T, Saita K et al (2020) Feasibility of supplemental robot-assisted knee flexion exercise following total knee arthroplasty. J Back Musculoskelet Rehabil 33:413–421

    Article  Google Scholar 

  30. Krebs HI, Volpe BT, Williams D et al (2007) Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Ieee Trans Neural Syst Rehabil Eng 15:327–335

    Article  Google Scholar 

  31. Kroger I, Nerz C, Schwickert L et al (2021) Robot-assisted training after proximal humeral fracture: a randomised controlled multicentre intervention trial. Clin Rehabil 35:242–252

    Article  Google Scholar 

  32. Kuhlmann A, Kruger H, Seidinger S et al (2020) Cost-effectiveness and budget impact of the microprocessor-controlled knee C‑Leg in transfemoral amputees with and without diabetes mellitus. Eur J Health Econ 21:437–449

    Article  Google Scholar 

  33. Kwak NS, Muller KR, Lee SW (2015) A lower limb exoskeleton control system based on steady state visual evoked potentials. J Neural Eng 12:56009

    Article  Google Scholar 

  34. Lan N, Niu CM, Hao M et al (2019) Achieving neural compatibility with human sensorimotor control in prosthetic and therapeutic devices. IEEE Trans Med Robotics Bionics 1:122–134

    Article  Google Scholar 

  35. Lo AC, Guarino PD, Richards LG et al (2010) Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 362:1772–1783

    Article  CAS  Google Scholar 

  36. Milosevic M, Nakanishi T, Sasaki A et al (2021) Cortical re-organization after traumatic brain injury elicited using functional electrical stimulation therapy: a case report. Front Neurosci 15:693861

    Article  Google Scholar 

  37. Mrotzek SJ, Ahmadi S, von Glinski A et al (2022) Rehabilitation during early postoperative period following total knee arthroplasty using single-joint hybrid assistive limb as new therapy device: a randomized, controlled clinical pilot study. Arch Orthop Trauma Surg 142(12):3941–3947

    Article  Google Scholar 

  38. Muller-Putz GR, Rupp R, Ofner P et al (2019) Applying intuitive EEG-controlled grasp neuroprostheses in individuals with spinal cord injury: preliminary results from the moregrasp clinical feasibility study. Annu Int Conf IEEE Eng Med Biol Soc 2019:5949–5955

    Google Scholar 

  39. Osuagwu BC, Wallace L, Fraser M et al (2016) Rehabilitation of hand in subacute tetraplegic patients based on brain computer interface and functional electrical stimulation: a randomised pilot study. J Neural Eng 13:65002

    Article  Google Scholar 

  40. Padilla-Castaneda MA, Sotgiu E, Barsotti M et al (2018) An orthopaedic robotic-assisted rehabilitation method of the forearm in virtual reality physiotherapy. J Healthc Eng 2018:7438609

    Article  Google Scholar 

  41. Park Y‑L, Chen B‑R, Pérez-Arancibia NO et al (2014) Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation. Bioinspir Biomim 9:16007

    Article  Google Scholar 

  42. Petrini FM, Valle G, Bumbasirevic M et al (2019) Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci Transl Med 11:eaav8939

    Article  Google Scholar 

  43. Popovic MR, Masani K, Micera S (2016) Functional electrical stimulation therapy: recovery of function following spinal cord injury and stroke. Neurorehabilitation technology. Springer, S 513–532

    Google Scholar 

  44. Postol N, Spratt NJ, Bivard A et al (2021) Physiotherapy using a free-standing robotic exoskeleton for patients with spinal cord injury: a feasibility study. J Neuroeng Rehabil 18:180

    Article  Google Scholar 

  45. Raspopovic S (2021) Neurorobotics for neurorehabilitation. Science 373:634–635

    Article  CAS  Google Scholar 

  46. Roy A, Krebs HI, Williams DJ et al (2009) Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans Robotics 25:569–582

    Article  Google Scholar 

  47. Schmalz T, Probsting E, Auberger R et al (2016) A functional comparison of conventional knee-ankle-foot orthoses and a microprocessor-controlled leg orthosis system based on biomechanical parameters. Prosthet Orthot Int 40:277–286

    Article  Google Scholar 

  48. Schwickert L, Klenk J, Stahler A et al (2011) Robotic-assisted rehabilitation of proximal humerus fractures in virtual environments: a pilot study. Z Gerontol Geriatr 44:387–392

    Article  CAS  Google Scholar 

  49. Sczesny-Kaiser M, Hoffken O, Aach M et al (2015) HAL(R) exoskeleton training improves walking parameters and normalizes cortical excitability in primary somatosensory cortex in spinal cord injury patients. J Neuroeng Rehabil 12:68

    Article  Google Scholar 

  50. Selfslagh A, Shokur S, Campos DSF et al (2019) Non-invasive, brain-controlled functional electrical stimulation for locomotion rehabilitation in individuals with paraplegia. Sci Rep 9:6782

    Article  Google Scholar 

  51. Setoguchi D, Kinoshita K, Kamada S et al (2022) Hybrid assistive limb improves restricted hip extension after total hip arthroplasty. Assist Technol 34:112–120

    Article  Google Scholar 

  52. Tanaka Y, Oka H, Nakayama S et al (2017) Improvement of walking ability during postoperative rehabilitation with the hybrid assistive limb after total knee arthroplasty: a randomized controlled study. SAGE Open Med 5:2050312117712888

    Article  Google Scholar 

  53. Tariq M, Trivailo PM, Simic M (2018) EEG-based BCI control schemes for lower-limb assistive-robots. Front Hum Neurosci 12:312

    Article  Google Scholar 

  54. Tonin L, Perdikis S, Kuzu TD, Pardo J, Orset B, Lee K, Aach M, Schildhauer TA, Martinez-Olivera R, Millan JR (2022) Learning to control a BMI-driven wheelchair for people with severe tetraplegia. iScience. https://doi.org/10.1016/j.isci.2022.105418

    Article  Google Scholar 

  55. Triolo ER, Busha BF (2022) Design and experimental testing of a force-augmenting exoskeleton for the human hand. J Neuroeng Rehabil 19:23

    Article  Google Scholar 

  56. Ull C, Hamsen U, Weckwerth C et al (2022) Approach to the basic needs in patients on invasive ventilation using eye-tracking devices for non-verbal communication. Artif Organs 46:439–450

    Article  Google Scholar 

  57. Valle G, Saliji A, Fogle E et al (2021) Mechanisms of neuro-robotic prosthesis operation in leg amputees. Sci Adv 7:eabd8354

    Article  Google Scholar 

  58. Vodovnik L, Bajd T, Kralj A et al (1981) Functional electrical stimulation for control of locomotor systems. Crit Rev Bioeng 6:63–131

    CAS  Google Scholar 

  59. Vodovnik L, Long C 2nd, Reswick JB et al (1965) Myo-electric control of paralyzed muscles. IEEE Trans Biomed Eng 12:169–172

    Article  CAS  Google Scholar 

  60. Vodovnik L, Rebersek S (1974) Information content of myo-control signals for orthotic and prosthetic systems. Arch Phys Med Rehabil 55:52–56

    CAS  Google Scholar 

  61. Yoo HJ, Lee S, Kim J et al (2019) Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. J Neuroeng Rehabil 16:162

    Article  Google Scholar 

  62. Yoshioka T, Kubota S, Sugaya H et al (2021) Feasibility and efficacy of knee extension training using a single-joint hybrid assistive limb, versus conventional rehabilitation during the early postoperative period after total knee arthroplasty. J Rural Med 16:22–28

    Article  Google Scholar 

  63. Yoshioka T, Kubota S, Sugaya H et al (2017) Robotic device-assisted knee extension training during the early postoperative period after opening wedge high tibial osteotomy: a case report. J Med Case Rep 11:213

    Article  Google Scholar 

  64. Zhang M, Cao J, Xie SQ et al (2018) A preliminary study on robot-assisted ankle rehabilitation for the treatment of drop foot. J Intell Robotic Syst 91:207–215

    Article  Google Scholar 

  65. Zhang M, Xie SQ, Li X et al (2017) Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans Ind Electron 65:1398–1407

    Article  Google Scholar 

  66. Zieriacks A, Aach M, Brinkemper A et al (2021) Rehabilitation of acute vs. chronic patients with spinal cord injury with a neurologically controlled hybrid assistive limb exoskeleton: is there a difference in outcome? Front Neurorobot 15:728327

    Article  Google Scholar 

  67. Jopp R (2019) Den Rollstuhl mit Gedanken steuern: Brain-Computer-Interface-Projekt in Bergmannsheil. https://idw-online.de/de/news717612. Zugegriffen: 15. Nov. 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Kruppa.

Ethics declarations

Interessenkonflikt

C. Kruppa, S. Benner, A. Brinkemper, M. Aach, C. Reimertz und T.A. Schildhauer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Christoph Gutenbrunner, Hannover

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kruppa, C., Benner, S., Brinkemper, A. et al. Neue Technologien und Robotik. Unfallchirurgie 126, 9–18 (2023). https://doi.org/10.1007/s00113-022-01270-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01270-0

Schlüsselwörter

Keywords

Navigation