Skip to main content

Advertisement

Log in

Biologische Rekonstruktion von großen Knochendefekten

Masquelet-Technik und neue Verfahren

Biological reconstruction of large bone defects

Masquelet technique and new procedures

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Ausgedehnte dia- und metaphysäre Knochendefekte stellen nach wie vor eine große Herausforderung für Unfallchirurg*innen dar. Zur biologischen Rekonstruktion derartiger Defekte wurden verschiedene Behandlungsoptionen beschrieben. Die am häufigsten verwendeten Methoden sind der Segmenttransport, die Masquelet-Technik und 3D-gedruckte Scaffolds (Gerüste). Bei der Masquelet-Technik dienen im Ersteingriff in den Knochendefekt eingebrachte Spacer aus Polymethylmethacrylat (PMMA), Kalziumsulfat oder Polypropylen der Induktion einer Fremdkörpermembran; im Zweiteingriff erfolgt die Auffüllung des membranös umgebenen Knochendefekts mit autologer Spongiosa. Der zeitliche Abstand zwischen beiden operativen Eingriffen beträgt 4 bis 8 Wochen, wobei die induzierten Membranen auch bei einer zeitlichen Latenz länger als 8 Wochen nicht ihre Bioaktivität einbüßen. Dreidimensional gedruckte Scaffolds finden zunehmend Anwendung, wobei jedoch große klinische Studie fehlen, um die genaue Rolle dieses Verfahrens bei der Rekonstruktion von Knochendefekten zu zeigen.

Abstract

Extensive diaphyseal and metaphyseal bone defects continue to pose a major challenge for orthopedic trauma surgeons. Various treatment options have been described for the biological reconstruction of these defects. The most frequently used methods are bone segment transport, the Masquelet technique and 3D printed scaffolds. As far as the Masquelet technique is concerned, in the first stage spacers, such as polymethyl methacrylate (PMMA), calcium sulfate or polypropylene are inserted into the bone defects to induce a foreign body membrane. In the second stage the bone defect surrounded by the induced membrane is filled with autologous cancellous bone. The time interval between the first and second interventions is usually 4–8 weeks whereby the induced membranes do not lose their bioactivity even with a latency period longer than 8 weeks. Three-dimensional printed scaffolds are increasingly used but large clinical studies are lacking in order to show the exact role of this procedure in the reconstruction of bone defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Liodakis E, Kenawey M, Krettek C, Wiebking U, Hankemeier S (2011) Comparison of 39 post-traumatic tibia bone transports performed with and without the use of an intramedullary rod: the long-term outcomes. Int Orthop 35(9):1397–1402. https://doi.org/10.1007/s00264-010-1094-5

    Article  PubMed  Google Scholar 

  2. Ilizarov GA, Lediaev VI (1969) Replacement of defects of long tubular bones by means of one of their fragments. Vestn Khir Im I I Grek 102(6):77–84

    CAS  PubMed  Google Scholar 

  3. Masquelet AC, Fitoussi F, Begue T, Muller GP (2000) Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 45(3):346–353

    CAS  PubMed  Google Scholar 

  4. Papakostidis C, Bhandari M, Giannoudis PV (2013) Distraction osteogenesis in the treatment of long bone defects of the lower limbs: effectiveness, complications and clinical results; a systematic review and meta-analysis. Bone Joint J 95-B(12):1673–1680. https://doi.org/10.1302/0301-620X.95B12.32385

    Article  CAS  PubMed  Google Scholar 

  5. Stafford PR, Norris BL (2010) Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury 41(2):72–77. https://doi.org/10.1016/S0020-1383(10)70014-0

    Article  Google Scholar 

  6. Paley D (1990) Problems, obstacles, and complications of limb lengthening by the Ilizarov technique. Clin Orthop Relat Res 25(0):81–104

    Google Scholar 

  7. Morwood MP, Streufert BD, Bauer A, Olinger C, Tobey D, Beebe M, Avilucea F, Buitrago AR, Collinge C, Sanders R, Mir H (2019) Intramedullary Nails Yield Superior Results Compared With Plate Fixation When Using the Masquelet Technique in the Femur and Tibia. J Orthop Trauma 33(11):547–552. https://doi.org/10.1097/BOT.0000000000001579

    Article  PubMed  Google Scholar 

  8. Krappinger D, Lindtner RA, Zegg M, Dal Pont A, Huber B (2015) Masquelet technique for the treatment of large dia- and metaphyseal bone defects. Oper Orthop Traumatol 27(4):357–368. https://doi.org/10.1007/s00064-014-0300-9

    Article  CAS  PubMed  Google Scholar 

  9. Cuthbert RJ, Churchman SM, Tan HB, McGonagle D, Jones E, Giannoudis PV (2013) Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 57(2):484–492. https://doi.org/10.1016/j.bone.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  10. Niikura T, Oda T, Jimbo N, Komatsu M, Oe K, Fukui T, Matsumoto T, Hayashi S, Matsushita T, Itoh T, Kuroda R (2022) Immunohistochemical analysis revealed the expression of bone morphogenetic proteins‑4, 6, 7, and 9 in human induced membrane samples treated with the Masquelet technique. J Orthop Surg Res 17(1):29. https://doi.org/10.1186/s13018-022-02922-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giannoudis PV, Faour O, Goff T, Kanakaris N, Dimitriou R (2011) Masquelet technique for the treatment of bone defects: tips-tricks and future directions. Injury 42(6):591–598. https://doi.org/10.1016/j.injury.2011.03.036

    Article  PubMed  Google Scholar 

  12. Sagardoy T, Ehret C, Bareille R, Benoit J, Amedee J, De Mones E (2018) Influence of External Beam Radiotherapy on the Properties of Polymethyl Methacrylate-Versus Silicone-Induced Membranes in a Bilateral Segmental Bone Defect in Rats. Tissue Eng Part A 24(9):703–710. https://doi.org/10.1089/ten.TEA.2017.0095

    Article  CAS  PubMed  Google Scholar 

  13. McBride-Gagyi S, Toth Z, Kim D, Ip V, Evans E, Watson JT, Nicolaou D (2018) Altering spacer material affects bone regeneration in the Masquelet technique in a rat femoral defect. J Orthop Res. https://doi.org/10.1002/jor.23866

    Article  PubMed  PubMed Central  Google Scholar 

  14. Toth Z, Roi M, Evans E, Watson JT, Nicolaou D, McBride-Gagyi S (2019) Masquelet technique: effects of spacer material and micro-topography on factor expression and Bone regeneration. Ann Biomed Eng 47(1):174–189. https://doi.org/10.1007/s10439-018-02137-5

    Article  PubMed  Google Scholar 

  15. Mathieu L, Murison JC, de Rousiers A, de l’Escalopier N, Lutomski D, Collombet JM, Durand M (2021) The Masquelet Technique: Can Disposable Polypropylene Syringes be an Alternative to Standard PMMA Spacers? A Rat Bone Defect Model. Clin Orthop Relat Res 479(12):2737–2751. https://doi.org/10.1097/CORR.0000000000001939

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ma YF, Jiang N, Zhang X, Qin CH, Wang L, Hu YJ, Lin QR, Yu B, Wang BW (2018) Calcium sulfate induced versus PMMA-induced membrane in a critical-sized femoral defect in a rat model. Sci Rep 8(1):637. https://doi.org/10.1038/s41598-017-17430-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liodakis E, Giannoudis VP, Sehmisch S, Jha A, Giannoudis PV (2022) Bone defect treatment: does the type and properties of the spacer affect the induction of Masquelet membrane? Evidence today. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-022-02005-x

    Article  PubMed  PubMed Central  Google Scholar 

  18. Thomas MV, Puleo DA (2009) Calcium sulfate: Properties and clinical applications. J Biomed Mater Res B Appl Biomater 88(2):597–610. https://doi.org/10.1002/jbm.b.31269

    Article  CAS  PubMed  Google Scholar 

  19. Jiang N, Qin CH, Ma YF, Wang L, Yu B (2016) Possibility of one-stage surgery to reconstruct bone defects using the modified Masquelet technique with degradable calcium sulfate as a cement spacer: A case report and hypothesis. Biomed Rep 4(3):374–378. https://doi.org/10.3892/br.2016.584

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie J, Wang W, Fan X, Li H, Wang H, Liao R, Hu Y, Zeng M (2021) Masquelet technique: Effects of vancomycin concentration on quality of the induced membrane. Injury. https://doi.org/10.1016/j.injury.2021.11.003

    Article  PubMed  Google Scholar 

  21. Shah SR, Smith BT, Tatara AM, Molina ER, Lee EJ, Piepergerdes TC, Uhrig BA, Guldberg RE, Bennett GN, Wenke JC, Mikos AG (2017) Effects of local antibiotic delivery from porous space maintainers on infection clearance and induction of an Osteogenic membrane in an infected Bone defect. Tissue Eng Part A 23(3):91–100. https://doi.org/10.1089/ten.TEA.2016.0389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41(1):27–37. https://doi.org/10.1016/j.ocl.2009.07.011

    Article  PubMed  Google Scholar 

  23. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC, French Society of Orthopaedic S (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 98(1):97–102. https://doi.org/10.1016/j.otsr.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Gessmann J, Rosteius T, Baecker H, Sivalingam K, Peter E, Schildhauer TA, Koller M (2021) Is the bioactivity of induced membranes time dependent? Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-021-01844-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gindraux F, Loisel F, Bourgeois M, Oudina K, Melin M, de Billy B, Sergent P, Leclerc G, Petite H, Auber F, Obert L, Pluvy I (2020) Induced membrane maintains its osteogenic properties even when the second stage of Masquelet’s technique is performed later. Eur J Trauma Emerg Surg 46(2):301–312. https://doi.org/10.1007/s00068-019-01184-4

    Article  PubMed  Google Scholar 

  26. Assal M, Stern R (2014) The Masquelet procedure gone awry. Orthopedics 37(11):e1045–1048. https://doi.org/10.3928/01477447-20141023-93

    Article  PubMed  Google Scholar 

  27. Huang Q, Ren C, Li M, Xu Y, Li Z, Lin H, Zhang K, Ma T (2021) Antibiotic calcium sulfate-loaded hybrid transport versus traditional Ilizarov bone transport in the treatment of large tibial defects after trauma. J Orthop Surg Res 16(1):568. https://doi.org/10.1186/s13018-021-02723-9

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang Q, Xu Y, Lu Y, Ren C, Liu L, Li M, Wang Q, Li Z, Xue H, Zhang K, Ma T (2022) Acute shortening and re-lengthening versus antibiotic calcium sulfate-loaded bone transport for the management of large segmental tibial defects after trauma. J Orthop Surg Res 17(1):219. https://doi.org/10.1186/s13018-022-03109-1

    Article  PubMed  PubMed Central  Google Scholar 

  29. Qin CH, Zhang HA, Chee YH, Pitarini A, Ali AA (2019) Comparison of the use of antibiotic-loaded calcium sulphate and wound irrigation-suction in the treatment of lower limb chronic osteomyelitis. Injury 50(2):508–514. https://doi.org/10.1016/j.injury.2018.10.036

    Article  PubMed  Google Scholar 

  30. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res 1(3):216–248. https://doi.org/10.4248/BR201303002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun H, Mei L, Song C, Cui X, Wang P (2006) The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27(9):1735–1740. https://doi.org/10.1016/j.biomaterials.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  32. Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—a review. Acta Biomater 10(2):557–579. https://doi.org/10.1016/j.actbio.2013.10.036

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, Cui Y, Liu H, Li S, Sun S, Xu H, Peng C, Wang Y, Wu D (2022) MicroRNA-loaded biomaterials for osteogenesis. Front Bioeng Biotechnol 10:952670. https://doi.org/10.3389/fbioe.2022.952670

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412. https://doi.org/10.1016/j.ijbiomac.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  35. Nommeots-Nomm A, Labbaf S, Devlin A, Todd N, Geng H, Solanki AK, Tang HM, Perdika P, Pinna A, Ejeian F, Tsigkou O, Lee PD, Esfahani MHN, Mitchell CA, Jones JR (2017) Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Acta Biomater 57:449–461. https://doi.org/10.1016/j.actbio.2017.04.030

    Article  CAS  PubMed  Google Scholar 

  36. Li F, Chen X, Liu P (2022) A Review on 3D Printed SBG/BMSP Composite Scaffolds. Tissue Eng Part B Rev. https://doi.org/10.1089/ten.TEB.2022.0140

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Liodakis MBA FEBOT.

Ethics declarations

Interessenkonflikt

E. Liodakis, T.O. Pacha, G. Aktas, S. Sehmisch und P. Mommsen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Stephan Sehmisch, Hannover

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liodakis, E., Pacha, T.O., Aktas, G. et al. Biologische Rekonstruktion von großen Knochendefekten. Unfallchirurgie 126, 184–189 (2023). https://doi.org/10.1007/s00113-022-01267-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01267-9

Schlüsselwörter

Keywords

Navigation