Skip to main content

Advertisement

Log in

Künstliche Intelligenz und Ausblick auf Anwendungsfelder in der Pseudarthrosentherapie

Von etablierten Standardmethoden in der Medizin hin zu neuen Forschungsfeldern

Artificial intelligence and novel approaches for treatment of non-union in bone

From established standard methods in medicine up to novel fields of research

  • Leitthema
  • Published:
Die Unfallchirurgie Aims and scope Submit manuscript

Zusammenfassung

Methoden der künstlichen Intelligenz (KI) haben in den letzten Jahren zunehmend Einzug in die Medizin gefunden. Einige Fachbereiche nutzen diese schon regelmäßig im klinischen Alltag. Die Anwendungsfelder sind weit, aber bisher noch nicht ausgeschöpft und in ihrer Vielfalt nicht ausreichend verstanden. Dieser Übersichtsbeitrag gibt einen Einblick in die Historie der KI und definiert die unterschiedlichen Begrifflichkeiten und Bereiche wie maschinelles Lernen (ML), neuronale Netze oder Deep Learning. Es werden die klassischen Schritte zur Entwicklung eines KI-Modells demonstriert sowie der Kreislauf der Datenbereinigung, -vorbereitung, das Training eines Modells bis hin zur Validierung und Umsetzung in der Praxis des klinischen Alltags erklärt. Bisherige Anwendungsfelder im muskuloskeletalen Fachbereich nutzen sowohl Methoden des ML als auch neuronaler Netze, z. B. zur Identifikation von Frakturen oder zur Klassifizierung. Prädikative Modelle anhand von Risikofaktoren mit dem Ziel der Komplikationsprävention finden erste Anwendung. Da Pseudarthrosen ein zwar seltenes, aber komplexes Krankheitsbild mit soziökonomischer Tragweite darstellen, ergeben sich viele noch offene Fragestellungen, die mithilfe der Methoden der KI zukünftig beantwortet werden könnten. Neue Forschungsfelder unter Nutzung von KI reichen von Prädikationsmodellen über Kostenanalysen bis hin zu personalisierter Therapie.

Abstract

Methods of artificial intelligence (AI) have found applications in many fields of medicine within the last few years. Some disciplines already use these methods regularly within their clinical routine. However, the fields of application are wide and there are still many opportunities to apply these new AI concepts. This review article gives an insight into the history of AI and defines the special terms and fields, such as machine learning (ML), neural networks and deep learning. The classical steps in developing AI models are demonstrated here, as well as the iteration of data rectification and preparation, the training of a model and subsequent validation before transfer into a clinical setting are explained. Currently, musculoskeletal disciplines implement methods of ML and also neural networks, e.g. for identification of fractures or for classifications. Also, predictive models based on risk factor analysis for prevention of complications are being initiated. As non-union in bone is a rare but very complex disease with dramatic socioeconomic impact for the healthcare system, many open questions arise which could be better understood by using methods of AI in the future. New fields of research applying AI models range from predictive models and cost analysis to personalized treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Turing AM (1950) Computing machinery and intelligence. Mind 59:433–460. https://doi.org/10.1093/mind/LIX.236.433

    Article  Google Scholar 

  2. McCarthy J, Minsky ML, Rochester N et al (1956) A proposal for the Dartmouth summer research project on artificial intelligence. Dartmouth Conference. Dartmouth College, Hanover, New Hampshire

    Google Scholar 

  3. Shortliffe E (1976) Computer-based medical consultations: MYCIN. Elsevier https://doi.org/10.1016/B978-0-444-00179-5.X5001-X

    Book  Google Scholar 

  4. Lalehzarian SP, Gowd AK, Liu JN (2021) Machine learning in orthopaedic surgery. World J Orthop 12:685–699. https://doi.org/10.5312/wjo.v12.i9.685

    Article  PubMed  PubMed Central  Google Scholar 

  5. Olczak J, Pavlopoulos J, Prijs J et al (2021) Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a Clinical AI Research (CAIR) checklist proposal. Acta Orthop 92:513–525. https://doi.org/10.1080/17453674.2021.1918389

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  CAS  PubMed  Google Scholar 

  7. Campbell M, Hoane AJ Jr, Hsu F (2002) Deep blue. Artif Intell 134:57–83. https://doi.org/10.1016/S0004-3702(01)00129-1

    Article  Google Scholar 

  8. Ferrucci D, Brown E, Chu-Carroll J et al (2010) Building watson: an overview of the deepQA project. Artif Intell Mag 31(3):59–79. https://doi.org/10.1609/aimag.v31i3.2303

    Article  Google Scholar 

  9. Silver D, Huang A, Maddison CJ et al (2016) Mastering the game of go with deep neural networks and tree search. Nature 529:484–489. https://doi.org/10.1038/nature16961

    Article  CAS  PubMed  Google Scholar 

  10. Wyatt JM, Booth GJ, Goldman AH (2021) Natural language processing and its use in orthopaedic research. Curr Rev Musculoskelet Med 14:392–396. https://doi.org/10.1007/s12178-021-09734-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Thirukumaran CP, Zaman A, Rubery PT et al (2019) Natural language processing for the identification of surgical site infections in orthopaedics. J Bone Joint Surg Am 101:2167–2174. https://doi.org/10.2106/JBJS.19.00661

    Article  PubMed  Google Scholar 

  12. Phung VH, Rhee EJ (2019) A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets. Appl Sci. https://doi.org/10.3390/app9214500

    Article  Google Scholar 

  13. Myers TG, Ramkumar PN, Ricciardi BF et al (2020) Artificial intelligence and orthopaedics: an introduction for clinicians. J Bone Joint Surg Am 102:830–840. https://doi.org/10.2106/JBJS.19.01128

    Article  PubMed  Google Scholar 

  14. Geron A (2019) Hands-on machine learning with Scikit—learn, Keras and tensor flow. O’Reilly Media

    Google Scholar 

  15. Martins LF (2014) IPython notebook essentials. Packt

    Google Scholar 

  16. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003

    Article  PubMed  Google Scholar 

  17. Zhao W, Davis CE (2011) A modified artificial immune system based pattern recognition approach—an application to clinical diagnostics. Artif Intell Med 52:1–9. https://doi.org/10.1016/j.artmed.2011.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kohonen T (2006) Self-organizing neural projections. Neural Netw 19:723–733. https://doi.org/10.1016/j.neunet.2006.05.001

    Article  PubMed  Google Scholar 

  19. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  20. Borjali A, Chen AF, Muratoglu OK et al (2020) Detecting total hip replacement prosthesis design on plain radiographs using deep convolutional neural network. J Orthop Res 38:1465–1471. https://doi.org/10.1002/jor.24617

    Article  PubMed  Google Scholar 

  21. Erne F, Dehncke D, Herath SC et al (2021) Deep learning in the detection of rare fractures—development of a “deep learning convolutional network” model for detecting Acetabular fractures. Z Orthop Unfall. https://doi.org/10.1055/a-1511-8595

    Article  PubMed  Google Scholar 

  22. Olczak J, Emilson F, Razavian A et al (2021) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop 92:102–108. https://doi.org/10.1080/17453674.2020.1837420

    Article  PubMed  Google Scholar 

  23. Kruse C, Eiken P, Vestergaard P (2017) Machine learning principles can improve hip fracture prediction. Calcif Tissue Int 100:348–360. https://doi.org/10.1007/s00223-017-0238-7

    Article  CAS  PubMed  Google Scholar 

  24. Xue Y, Zhang R, Deng Y et al (2017) A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS ONE 12:e178992. https://doi.org/10.1371/journal.pone.0178992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Begg R, Kamruzzaman J (2005) A machine learning approach for automated recognition of movement patterns using basic, kinetic and kinematic gait data. J Biomech 38:401–408. https://doi.org/10.1016/j.jbiomech.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  26. Joyseeree R, Abou Sabha R, Mueller H (2015) Applying machine learning to gait analysis data for disease identification. Stud Health Technol Inform 210:850–854

    PubMed  Google Scholar 

  27. Sikka RS, Baer M, Raja A et al (2019) Analytics in sports medicine: implications and responsibilities that accompany the era of big data. J Bone Joint Surg Am 101:276–283. https://doi.org/10.2106/JBJS.17.01601

    Article  PubMed  Google Scholar 

  28. Ekegren CL, Edwards ER, de Steiger R et al (2018) Incidence, costs and predictors of non-union, delayed union and mal-union following long bone fracture. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph15122845

    Article  PubMed  PubMed Central  Google Scholar 

  29. McCoy TH Jr., Fragomen AT, Hart KL et al (2019) Genomewide association study of fracture nonunion using electronic health records. JBMR Plus 3:23–28. https://doi.org/10.1002/jbm4.10063

    Article  PubMed  Google Scholar 

  30. Mills LA, Aitken SA, Simpson A (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88:434–439. https://doi.org/10.1080/17453674.2017.1321351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Calori GM, Colombo M, Mazza EL et al (2014) Validation of the non-union scoring system in 300 long bone non-unions. Injury 45(Suppl 6):S93–S97. https://doi.org/10.1016/j.injury.2014.10.030

    Article  PubMed  Google Scholar 

  32. Calori GM, Phillips M, Jeetle S et al (2008) Classification of non-union: need for a new scoring system? Injury 39(Suppl 2):S59–S63. https://doi.org/10.1016/S0020-1383(08)70016-0

    Article  PubMed  Google Scholar 

  33. Santolini E, West RM, Giannoudis PV (2020) Leeds-Genoa Non-Union Index: a clinical tool for asessing the need for early intervention after long bone fracture fixation. Int Orthop 44:161–172. https://doi.org/10.1007/s00264-019-04376-0

    Article  PubMed  Google Scholar 

  34. Whelan DB, Bhandari M, Stephen D et al (2010) Development of the radiographic union score for tibial fractures for the assessment of tibial fracture healing after intramedullary fixation. J Trauma 68:629–632. https://doi.org/10.1097/TA.0b013e3181a7c16d

    Article  PubMed  Google Scholar 

  35. Karnuta JM, Navarro SM, Haeberle HS et al (2019) Bundled care for hip fractures: a machine-learning approach to an untenable patient-specific payment model. J Orthop Trauma 33:324–330. https://doi.org/10.1097/BOT.0000000000001454

    Article  PubMed  Google Scholar 

  36. Navarro SM, Wang EY, Haeberle HS et al (2018) Machine learning and primary total knee arthroplasty: patient forecasting for a patient-specific payment model. J Arthroplasty 33:3617–3623. https://doi.org/10.1016/j.arth.2018.08.028

    Article  PubMed  Google Scholar 

  37. Ramkumar PN, Haeberle HS, Bloomfield MR et al (2019) Artificial intelligence and arthroplasty at a single institution: real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. J Arthroplasty 34:2204–2209. https://doi.org/10.1016/j.arth.2019.06.018

    Article  PubMed  Google Scholar 

  38. Ramkumar PN, Navarro SM, Haeberle HS et al (2019) Development and validation of a machine learning algorithm after primary total hip arthroplasty: applications to length of stay and payment models. J Arthroplasty 34:632–637. https://doi.org/10.1016/j.arth.2018.12.030

    Article  PubMed  Google Scholar 

  39. Beard DJ, Harris K, Dawson J et al (2015) Meaningful changes for the Oxford hip and knee scores after joint replacement surgery. J Clin Epidemiol 68:73–79. https://doi.org/10.1016/j.jclinepi.2014.08.009

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fontana MA, Lyman S, Sarker GK et al (2019) Can machine learning algorithms predict which patients Will achieve minimally clinically important differences from total joint arthroplasty? Clin Orthop Relat Res 477:1267–1279. https://doi.org/10.1097/CORR.0000000000000687

    Article  PubMed  PubMed Central  Google Scholar 

  41. Keurentjes JC, Van Tol FR, Fiocco M et al (2012) Minimal clinically important differences in health-related quality of life after total hip or knee replacement: a systematic review. Bone Joint Res 1:71–77. https://doi.org/10.1302/2046-3758.15.2000065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rupp M, Walter N, Pfeifer C et al (2021) Inzidenz von Frakturen in der Ewachsenenpopulation in Deutschland. Dtsch Arztebl Int 40:665–669

    Google Scholar 

Download references

Danksagung

Wir möchten uns bei Dr. Dr. Matthias Reumann, Connected Health Insights International, für die fachliche Expertise zu künstlicher Intelligenz bedanken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie K. Reumann.

Ethics declarations

Interessenkonflikt

M.K. Reumann, B.J. Braun, M.M. Menger, F. Springer, J. Jazewitsch, T. Schwarz, A. Nüssler, T. Histing und M.F.R. Rollmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Benedikt J. Braun, Tübingen

Tina Histing, Tübingen

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reumann, M.K., Braun, B.J., Menger, M.M. et al. Künstliche Intelligenz und Ausblick auf Anwendungsfelder in der Pseudarthrosentherapie. Unfallchirurgie 125, 611–618 (2022). https://doi.org/10.1007/s00113-022-01202-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01202-y

Schlüsselwörter

Keywords

Navigation