Skip to main content

Advertisement

Log in

3D-Druck im Bereich der Schulterchirurgie

3D printing in the field of shoulder surgery

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

This article has been updated

Zusammenfassung

Die Technologie des 3D-Drucks ist ein relativ neues Verfahren mit einem hohen Potenzial im Bereich der Schulterchirurgie. Das Verfahren des 3D-Drucks entwickelt sich zunehmend weiter und gewinnt ebenfalls an Anwendern. Prinzipiell kann der 3D-Druck präoperativ im Bereich der Operationsplanung, der Patientenaufklärung und der Lehre eingesetzt werden, findet jedoch mehr und mehr intraoperative Anwendung. Neben der intraoperativen Veranschaulichung der Modelle lassen sich im 3D-Druck-Verfahren spezifische individuelle Instrumente und Implantate herstellen. Diese ermöglichen den präzisen Transfer der präoperativen Planung auf den Operationssitus. Ungenauigkeiten sind v. a. auf die Weichteile zurückzuführen. Sowohl im Bereich der Endoprothetik, der Schulterinstabilität und der Traumatologie kann der 3D-Druck einen Mehrwert bieten. Die Literatur zeigt in Bezug auf Operationszeit, Blutverlust und Operationsergebnis vielversprechende Ergebnisse. Andererseits ist weiterhin unklar, welcher Befund einen 3D-Druck erfordert. Fragen betreffen zudem die Planungs‑/Produktionszeit und die entstehenden Mehrkosten. Nichtsdestotrotz stellt der 3D-Druck eine sinnvolle Erweiterung des Portfolios des Chirurgen dar, deren Nutzen v. a. in der Komplexsituation sichtbar wird. Weiterhin erlaubt das Verfahren, auf bestimmte Umstände mit einer gewissen Flexibilität reagieren zu können.

Abstract

The 3D printing technology is a relatively new procedure with a high potential, especially in the field of shoulder surgery. The 3D printing procedures are increasingly being developed and also gaining new users. Principally, 3D printing procedures can be applied preoperatively in planning the surgical procedure, patient clarification and in teaching; however, the technology is increasing being used intraoperatively. In addition to intraoperative visualization of the models, 3D printing permits the use of individual and specific instruments and implants. This allows the precise transfer of the preoperative planning to the surgical procedure. Inaccuracies are mainly caused by soft tissues. The 3D printing can be beneficial in the fields of arthroplasty, shoulder instability as well as orthopedic trauma. The literature shows promising results in relation to duration of surgery, blood loss and clinical results of the procedure. On the other hand, it is still unclear which indications warrant the use of 3D printing. Other aspects that raise questions are the time of planning, the production time and the additional cost that the use of 3D printing entails. Nonetheless, 3D printing represents a meaningful enhancement of the portfolio of surgeons, which becomes highly beneficial and useful in complex situations. Furthermore, this procedure enables a certain amount of flexibility when reacting to certain circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Change history

  • 12 April 2022

    Im Titel wurde das Wort „in“ gelöscht. Der Titel lautet korrekt: 3D-Druck im Bereich der Schulterchirurgie

Literatur

  1. Krettek C, Bruns N (2019) Current concepts and new developments of 3D printing in trauma surgery. Unfallchirurg 122(4):256–269

    Article  CAS  PubMed  Google Scholar 

  2. Kim SH, Wise BL, Zhang Y, Szabo RM (2011) Increasing incidence of shoulder arthroplasty in the United States. J Bone Joint Surg Am 93(24):2249–2254

    Article  PubMed  Google Scholar 

  3. Lubbeke A, Rees JL, Barea C, Combescure C, Carr AJ, Silman AJ (2017) International variation in shoulder arthroplasty. Acta Orthop 88(6):592–599

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oppermann J, Celik E, Bredow J, Beyer F, Hackl M, Spies CK et al (2016) Shoulder arthroplasty in Germany: 2005–2012. Arch Orthop Trauma Surg 136(5):723–729

    Article  PubMed  Google Scholar 

  5. Walch G, Young AA, Boileau P, Loew M, Gazielly D, Mole D (2012) Patterns of loosening of polyethylene keeled glenoid components after shoulder arthroplasty for primary osteoarthritis: results of a multicenter study with more than five years of follow-up. J Bone Joint Surg Am 94(2):145–150

    Article  PubMed  Google Scholar 

  6. Farron A, Terrier A, Buchler P (2006) Risks of loosening of a prosthetic glenoid implanted in retroversion. J Shoulder Elbow Surg 15(4):521–526

    Article  PubMed  Google Scholar 

  7. Hopkins AR, Hansen UN, Amis AA, Emery R (2004) The effects of glenoid component alignment variations on cement mantle stresses in total shoulder arthroplasty. J Shoulder Elbow Surg 13(6):668–675

    Article  PubMed  Google Scholar 

  8. Iannotti JP, Spencer EE, Winter U, Deffenbaugh D, Williams G (2005) Prosthetic positioning in total shoulder arthroplasty. J Shoulder Elbow Surg 14(1 Suppl S):111S–121S

    Article  PubMed  Google Scholar 

  9. Nyffeler RW, Sheikh R, Atkinson TS, Jacob HA, Favre P, Gerber C (2006) Effects of glenoid component version on humeral head displacement and joint reaction forces: an experimental study. J Shoulder Elbow Surg 15(5):625–629

    Article  PubMed  Google Scholar 

  10. Shapiro TA, McGarry MH, Gupta R, Lee YS, Lee TQ (2007) Biomechanical effects of glenoid retroversion in total shoulder arthroplasty. J Shoulder Elbow Surg 16(3 Suppl):S90–S95

    Article  PubMed  Google Scholar 

  11. Bohsali KI, Bois AJ, Wirth MA (2017) Complications of shoulder arthroplasty. J Bone Joint Surg Am 99(3):256–269

    Article  PubMed  Google Scholar 

  12. Walch G, Badet R, Boulahia A, Khoury A (1999) Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty 14(6):756–760

    Article  CAS  PubMed  Google Scholar 

  13. Iannotti JP, Jun BJ, Patterson TE, Ricchetti ET (2017) Quantitative measurement of osseous pathology in advanced glenohumeral osteoarthritis. J Bone Joint Surg Am 99(17):1460–1468

    Article  PubMed  Google Scholar 

  14. Gregory T, Hansen U, Emery R, Amis AA, Mutchler C, Taillieu F et al (2012) Total shoulder arthroplasty does not correct the orientation of the eroded glenoid. Acta Orthop 83(5):529–535

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gregory TM, Sankey A, Augereau B, Vandenbussche E, Amis A, Emery R et al (2013) Accuracy of glenoid component placement in total shoulder arthroplasty and its effect on clinical and radiological outcome in a retrospective, longitudinal, monocentric open study. Plos One 8(10):e75791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ho JC, Sabesan VJ, Iannotti JP (2013) Glenoid component retroversion is associated with osteolysis. J Bone Joint Surg Am 95(12):e82

    Article  PubMed  Google Scholar 

  17. Scalise JJ, Bryan J, Polster J, Brems JJ, Iannotti JP (2008) Quantitative analysis of glenoid bone loss in osteoarthritis using three-dimensional computed tomography scans. J Shoulder Elbow Surg 17(2):328–335

    Article  PubMed  Google Scholar 

  18. Scalise JJ, Codsi MJ, Bryan J, Iannotti JP (2008) The three-dimensional glenoid vault model can estimate normal glenoid version in osteoarthritis. J Shoulder Elbow Surg 17(3):487–491

    Article  PubMed  Google Scholar 

  19. Iannotti JP, Weiner S, Rodriguez E, Subhas N, Patterson TE, Jun BJ et al (2015) Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am 97(8):651–658

    Article  PubMed  Google Scholar 

  20. Iannotti J, Baker J, Rodriguez E, Brems J, Ricchetti E, Mesiha M et al (2014) Three-dimensional preoperative planning software and a novel information transfer technology improve glenoid component positioning. J Bone Joint Surg Am 96(9):e71

    Article  PubMed  Google Scholar 

  21. Walch G, Vezeridis PS, Boileau P, Deransart P, Chaoui J (2015) Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study. J Shoulder Elbow Surg 24(2):302–309

    Article  PubMed  Google Scholar 

  22. Gauci MO, Boileau P, Baba M, Chaoui J, Walch G (2016) Patient-specific glenoid guides provide accuracy and reproducibility in total shoulder arthroplasty. Bone Joint J 98-B(8):1080–1085

    Article  CAS  PubMed  Google Scholar 

  23. Suero EM, Citak M, Lo D, Krych AJ, Craig EV, Pearle AD (2013) Use of a custom alignment guide to improve glenoid component position in total shoulder arthroplasty. Knee Surg Sports Traumatol Arthrosc 21(12):2860–2866

    Article  PubMed  Google Scholar 

  24. Hendel MD, Bryan JA, Barsoum WK, Rodriguez EJ, Brems JJ, Evans PJ et al (2012) Comparison of patient-specific instruments with standard surgical instruments in determining glenoid component position: a randomized prospective clinical trial. J Bone Joint Surg Am 94(23):2167–2175

    Article  PubMed  Google Scholar 

  25. Berhouet J, Rol M, Spiry C, Slimane M, Chevalier C, Favard L (2018) Shoulder patient-specific guide: First experience in 10 patients indicates room for improvement. Orthop Traumatol Surg Res 104(1):45–51

    Article  CAS  PubMed  Google Scholar 

  26. Burns DM, Frank T, Whyne CM, Henry PD (2019) Glenoid component positioning and guidance techniques in anatomic and reverse total shoulder arthroplasty: A systematic review and meta-analysis. Shoulder Elbow 11(2 Suppl):16–28

    Article  PubMed  Google Scholar 

  27. Verborgt O, Vanhees M, Heylen S, Hardy P, Declercq G, Bicknell R (2014) Computer navigation and patient-specific instrumentation in shoulder arthroplasty. Sports Med Arthrosc Rev 22(4):e42–e49

    Article  PubMed  Google Scholar 

  28. Wagner ER, Farley KX, Higgins I, Wilson JM, Daly CA, Gottschalk MB (2020) The incidence of shoulder arthroplasty: rise and future projections compared with hip and knee arthroplasty. J Shoulder Elbow Surg 29(12):2601–2609

    Article  PubMed  Google Scholar 

  29. Chammaa R, Uri O, Lambert S (2017) Primary shoulder arthroplasty using a custom-made hip-inspired implant for the treatment of advanced glenohumeral arthritis in the presence of severe glenoid bone loss. J Shoulder Elbow Surg 26(1):101–107

    Article  PubMed  Google Scholar 

  30. Dines DM, Gulotta L, Craig EV, Dines JS (2017) Novel solution for massive glenoid defects in shoulder arthroplasty: a patient-specific glenoid vault reconstruction system. Am J Orthop 46(2):104–108

    PubMed  Google Scholar 

  31. Debeer P, Berghs B, Pouliart N, Van den Bogaert G, Verhaegen F, Nijs S (2019) Treatment of severe glenoid deficiencies in reverse shoulder arthroplasty: the Glenius Glenoid Reconstruction System experience. J Shoulder Elbow Surg 28(8):1601–1608

    Article  PubMed  Google Scholar 

  32. De Boer FA, Huijsmans PE (2020) Use of a 3D-printed custom reverse shoulder arthroplasty. Tech Orthop 35(1):38–41

    Article  Google Scholar 

  33. Porcellini G, Micheloni GM, Tarallo L, Paladini P, Merolla G, Catani F (2021) Custom-made reverse shoulder arthroplasty for severe glenoid bone loss: review of the literature and our preliminary results. J Orthop Traumatol 22(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta A, Thussbas C, Koch M, Seebauer L (2018) Management of glenoid bone defects with reverse shoulder arthroplasty—surgical technique and clinical outcomes. J Shoulder Elb Surg. https://doi.org/10.1016/j.jse.2017.10.004

    Article  Google Scholar 

  35. Wall B, Nove-Josserand L, O’Connor DP, Edwards TB, Walch G (2007) Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am 89(7):1476–1485

    PubMed  Google Scholar 

  36. Patel DN, Young B, Onyekwelu I, Zuckerman JD, Kwon YW (2012) Reverse total shoulder arthroplasty for failed shoulder arthroplasty. J Shoulder Elbow Surg 21(11):1478–1483

    Article  PubMed  Google Scholar 

  37. Wieser K, Borbas P, Ek ET, Meyer DC, Gerber C (2015) Conversion of stemmed hemi- or total to reverse total shoulder arthroplasty: advantages of a modular stem design. Clin Orthop Relat Res 473(2):651–660

    Article  PubMed  Google Scholar 

  38. Castagna A, Delcogliano M, de Caro F, Ziveri G, Borroni M, Gumina S et al (2013) Conversion of shoulder arthroplasty to reverse implants: clinical and radiological results using a modular system. Int Orthop 37(7):1297–1305

    Article  PubMed  PubMed Central  Google Scholar 

  39. Matsoukis J, Billuart F, Houssam K, Dujardin F, Walch G (2015) Conversion of total shoulder arthroplasty to reverse shoulder arthroplasty made possible by custom humeral adapter. Orthop Traumatol Surg Res 101(6):759–761

    Article  CAS  PubMed  Google Scholar 

  40. Sugaya H, Moriishi J, Dohi M, Kon Y, Tsuchiya A (2003) Glenoid rim morphology in recurrent anterior glenohumeral instability. J Bone Joint Surg Am 85(5):878–884

    Article  PubMed  Google Scholar 

  41. Saito H, Itoi E, Minagawa H, Yamamoto N, Tuoheti Y, Seki N (2009) Location of the Hill-Sachs lesion in shoulders with recurrent anterior dislocation. Arch Orthop Trauma Surg 129(10):1327–1334

    Article  PubMed  Google Scholar 

  42. Di Giacomo G, Itoi E, Burkhart SS (2014) Evolving concept of bipolar bone loss and the Hill-Sachs lesion: from „engaging/non-engaging“ lesion to „on-track/off-track“ lesion. Arthroscopy 30(1):90–98

    Article  PubMed  Google Scholar 

  43. Sheth U, Theodoropoulos J, Abouali J (2015) Use of 3‑dimensional printing for preoperative planning in the treatment of recurrent anterior shoulder instability. Arthrosc Tech 4(4):e311–e316

    Article  PubMed  PubMed Central  Google Scholar 

  44. Willemsen K, Berendes TD, Geurkink T, Bleys R, Leeflang MA, Weinans H et al (2019) A novel treatment for anterior shoulder instability: a biomechanical comparison between a patient-specific implant and the Latarjet procedure. J Bone Joint Surg Am 101(14):e68

    Article  PubMed  Google Scholar 

  45. Kim JW, Lee Y, Seo J, Park JH, Seo YM, Kim SS et al (2018) Clinical experience with three-dimensional printing techniques in orthopedic trauma. J Orthop Sci 23(2):383–388

    Article  PubMed  Google Scholar 

  46. Chen Y, Jia X, Qiang M, Zhang K, Chen S (2018) Computer-assisted virtual surgical technology versus three-dimensional printing technology in preoperative planning for displaced three and four-part fractures of the proximal end of the humerus. J Bone Joint Surg Am 100(22):1960–1968

    Article  PubMed  Google Scholar 

  47. Piccioli A, Maccauro G, Rossi B, Scaramuzzo L, Frenos F, Capanna R (2010) Surgical treatment of pathologic fractures of humerus. Injury 41(11):1112–1116

    Article  PubMed  Google Scholar 

  48. You W, Liu LJ, Chen HX, Xiong JY, Wang DM, Huang JH et al (2016) Application of 3D printing technology on the treatment of complex proximal humeral fractures (Neer3-part and 4‑part) in old people. Orthop Traumatol Surg Res 102(7):897–903

    Article  CAS  PubMed  Google Scholar 

  49. Wang Q, Hu J, Guan J, Chen Y, Wang L (2018) Proximal third humeral shaft fractures fixed with long helical PHILOS plates in elderly patients: benefit of pre-contouring plates on a 3D-printed model—a retrospective study. J Orthop Surg Res 13(1):203

    Article  PubMed  PubMed Central  Google Scholar 

  50. Eltorai AE, Nguyen E, Daniels AH (2015) Three-dimensional printing in orthopedic surgery. Orthopedics 38(11):684–687

    Article  PubMed  Google Scholar 

  51. Bizzotto N, Sandri A, Regis D, Romani D, Tami I, Magnan B (2015) Three-dimensional printing of bone fractures: a new tangible realistic way for preoperative planning and education. Surg Innov 22(5):548–551

    Article  PubMed  Google Scholar 

  52. Bizzotto N, Tami I, Santucci A, Adani R, Poggi P, Romani D et al (2015) 3D Printed replica of articular fractures for surgical planning and patient consent: a two years multi-centric experience. 3d Print Med 2(1):2

    Article  PubMed  Google Scholar 

  53. Bagaria V, Chaudhary K (2017) A paradigm shift in surgical planning and simulation using 3Dgraphy: experience of first 50 surgeries done using 3D-printed biomodels. Injury 48(11):2501–2508

    Article  PubMed  Google Scholar 

  54. Sanghavi PS, Jankharia BG (2016) Holding versus seeing pathology. Three-dimensional printing of the bony pelvis for preoperative planning of a complex pelvis fracture: A case report. Indian J Radiol Imaging 26(3):397–401

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yang L, Grottkau B, He Z, Ye C (2017) Three dimensional printing technology and materials for treatment of elbow fractures. Int Orthop 41(11):2381–2387

    Article  PubMed  Google Scholar 

  56. Mulford JS, Babazadeh S, Mackay N (2016) Three-dimensional printing in orthopaedic surgery: review of current and future applications. ANZ J Surg 86(9):648–653

    Article  PubMed  Google Scholar 

  57. Swartman B, Franke J, Schnurr C, Mardian S, Willy C, AGDd DGOU et al (2020) Digital OR. Unfallchirurg 123(11):849–855

    Article  CAS  PubMed  Google Scholar 

  58. Campana V, Cardona V, Vismara V, Monteleone AS, Piazza P, Messinese P et al (2020) 3D printing in shoulder surgery. Orthop Rev (Pavia) 12(Suppl 1):8681

    Google Scholar 

  59. Chen C, Cai L, Zhang C, Wang J, Guo X, Zhou Y (2018) Treatment of die-punch fractures with 3D printing technology. J Invest Surg 31(5):385–392

    Article  PubMed  Google Scholar 

  60. Yang L, Shang XW, Fan JN, He ZX, Wang JJ, Liu M et al (2016) Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication. Biomed Res Int 2016:2482086

    PubMed  PubMed Central  Google Scholar 

  61. Weidert S, Andress S, Suero E, Becker C, Hartel M, Behle M et al (2019) 3D printing in orthopedic and trauma surgery education and training : possibilities and fields of application. Unfallchirurg 122(6):444–451

    Article  PubMed  Google Scholar 

  62. Paul RA, Maldonado-Rodriguez N, Docter S, Khan M, Veillette C, Verma N et al (2019) Glenoid bone grafting in primary reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 28(12):2447–2456

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nael Hawi MBA.

Ethics declarations

Interessenkonflikt

N. Hawi, N. Bruns, S. Razaeian, J. D. Clausen und C. Krettek geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Christian Krettek, Hannover

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawi, N., Bruns, N., Razaeian, S. et al. 3D-Druck im Bereich der Schulterchirurgie. Unfallchirurg 125, 371–380 (2022). https://doi.org/10.1007/s00113-022-01174-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-022-01174-z

Schlüsselwörter

Keywords

Navigation