Skip to main content

Advertisement

Log in

Management von frakturassoziierten Infektionen

Management of fracture-related infections

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Frakturassoziierte Infektion („fracture-related infections“, FRI) stellen eine Herausforderung für die unfallchirurgische Versorgung dar. Die Probleme in der Behandlung solcher Infektionen sind vielfältig. Insbesondere bei noch nicht abgeschlossener Frakturheilung sind neben der Infektsanierung zusätzlich die Widerherstellung der knöchernen Kontinuität zu adressieren. Das Ausmaß der begleitenden Weichteilschädigung ist von besonderer Relevanz, da eine reduzierte Vaskularisation zu Einschränkungen in der Frakturheilung führt. Während akute Infektionen häufig einfach zu erkennen sind, können die Symptome bei chronischen Infektionen unspezifisch sein und sich der Diagnostik entziehen. Diese Tatsache macht die Behandlung solcher Infektionen kompliziert und erfordert z. T. ein interdisziplinäres Vorgehen. Aus diesem Grund hat die „Fracture-related Infection Consensus Group“ einen Algorithmus entwickelt, der erstmals 2017 publiziert sowie 2018 und 2020 erneuert wurde. Bei den FRI handelt es sich um biofilmassoziierte Infektionen, sodass die aktuellen Richtlinien sich an die bereits etablierten Therapiealgorithmen für periprothetische Infektionen anlehnen. Trotz der Analogien zu periprothetischen Infektionen bestehen auch Unterschiede bei der Behandlung, da die Aspekte der Frakturheilung und Knochendefektsanierung einen determinierenden Faktor in der Therapie der FRI darstellen. Im Folgenden werden die Besonderheiten von FRI herausgestellt sowie die Klassifikationen und ein Leitfaden zur Behandlung erörtert.

Abstract

Fracture-related infections (FRI) are a major challenge in orthopedic trauma surgery. The problems in the treatment of such infections are manifold. Especially in cases with insufficient fracture consolidation the treatment not only focusses on the eradication of the infection but also on the restoration of the osseous continuity. The extent of the accompanying soft tissue damage is of particular importance as reduced vascularization leads to impairments in fracture healing. Although acute infections are frequently easy to recognize, the symptoms of chronic infections can be unspecific and evade the diagnostic procedures. This fact makes the treatment of such infections complicated and sometimes necessitates an interdisciplinary approach. For this reason, the Fracture-related Infection Consensus Group developed an algorithm, which was first published in 2017 and revised in 2018 and 2020. The FRIs are biofilm-associated infections, so that the current guidelines follow the previously established treatment algorithms for periprosthetic infections. Despite the analogies to periprosthetic infections there are also differences in the treatment as the aspects of fracture healing and bone defect restoration represent determining factors in the treatment of FRI. This article presents the special features of FRI and the classification and guidelines for the treatment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

AO:

Arbeitsgemeinschaft für Osteosynthesefragen

CRP:

C‑reaktives Protein

FDG-PET:

18F‑Fluordesoxyglucose-Positronen-Emissions-Tomographie

FRI:

„Fracture-related infection“ (frakturassoziierte Infektion)

HPF:

„High power field“

pAVK:

Periphere arterielle Verschlusskrankheit

PMN:

„Polymorphonuclear cells“

RT-PCR:

„Real-time polymerase chain reaction“ (Echtzeit-Polymerase-Kettenreaktion)

SIRS:

„Systemic inflammatory response syndrome“ (systemisches inflammatorisches Response-Syndrom)

SPECT:

Singlephotonen-Emissionscomputertomographie

Literatur

  1. Akgun D et al (2020) High rate of unexpected positive cultures in presumed aseptic revision of stiff shoulders after proximal humerus osteosynthesis. BMC Musculoskelet Disord 21(1):393

    PubMed  PubMed Central  Google Scholar 

  2. Baecker H et al (2020) Fracture-related infections in traumatology : current standards and new developments in diagnostics and treatment. Orthopade 49(8):702–709

    CAS  PubMed  Google Scholar 

  3. Bezstarosti H et al (2019) Insights into treatment and outcome of fracture-related infection: a systematic literature review. Arch Orthop Trauma Surg 139(1):61–72

    CAS  PubMed  Google Scholar 

  4. Metsemakers WJ et al (2017) Prevention of fracture-related infection: a multidisciplinary care package. Int Orthop 41(12):2457–2469

    PubMed  Google Scholar 

  5. Zimmerli W, Sendi P (2017) Orthopaedic biofilm infections. APMIS 125(4):353–364

    PubMed  Google Scholar 

  6. Murdoch DR et al (2001) Infection of orthopedic prostheses after staphylococcus aureus bacteremia. Clin Infect Dis 32(4):647–649

    CAS  PubMed  Google Scholar 

  7. Depypere M et al (2020) Pathogenesis and management of fracture-related infection. Clin Microbiol Infect 26(5):572–578

    CAS  PubMed  Google Scholar 

  8. Metsemakers WJ et al (2018) Infection after fracture fixation: current surgical and microbiological concepts. Injury 49(3):511–522

    CAS  PubMed  Google Scholar 

  9. Omar M et al (2021) Open fractures. Unfallchirurg 124(8):651–665

    PubMed  Google Scholar 

  10. Myers WT, Leong M, Phillips LG (2007) Optimizing the patient for surgical treatment of the wound. Clin Plast Surg 34(4):607–620

    PubMed  Google Scholar 

  11. Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19(4):349–356

    CAS  PubMed  Google Scholar 

  12. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37(2):S59–66

    PubMed  Google Scholar 

  13. Metsemakers WJ et al (2018) Fracture-related infection: a consensus on definition from an international expert group. Injury 49(3):505–510

    CAS  PubMed  Google Scholar 

  14. Jhajharia K et al (2015) Biofilm in endodontics: a review. J Int Soc Prev Community Dent 5(1):1–12

    PubMed  PubMed Central  Google Scholar 

  15. Vanvelk N et al (2018) Preclinical in vivo models of fracture-related infection: a systematic review and critical appraisal. Eur Cell Mater 36:184–199

    CAS  PubMed  Google Scholar 

  16. Gustilo RB, Mendoza RM, Williams DN (1984) Problems in the management of type III (severe) open fractures: a new classification of type III open fractures. J Trauma 24(8):742–746

    CAS  PubMed  Google Scholar 

  17. Gustilo RB, Anderson JT (1976) Prevention of infection in the treatment of one thousand and twenty-five open fractures of long bones: retrospective and prospective analyses. J Bone Joint Surg Am 58(4):453–458

    CAS  PubMed  Google Scholar 

  18. Gustilo RB, Merkow RL, Templeman D (1990) The management of open fractures. J Bone Joint Surg Am 72(2):299–304

    CAS  PubMed  Google Scholar 

  19. Hoff WS et al (2011) East practice management guidelines work group: update to practice management guidelines for prophylactic antibiotic use in open fractures. J Trauma 70(3):751–754

    PubMed  Google Scholar 

  20. Messner J et al (2017) Duration of administration of antibiotic agents for open fractures: meta-analysis of the existing evidence. Surg Infect (Larchmt) 18(8):854–867

    Google Scholar 

  21. Lloyd BA et al (2018) Antimicrobial prophylaxis with combat-related open soft-tissue injuries. Mil Med 183(9-10):e260–e265

    PubMed  PubMed Central  Google Scholar 

  22. Metsemakers WJ et al (2020) General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg 140(8):1013–1027

    PubMed  Google Scholar 

  23. Moller AM et al (2002) Effect of preoperative smoking intervention on postoperative complications: a randomised clinical trial. Lancet 359(9301):114–117

    PubMed  Google Scholar 

  24. Jonsson K et al (1991) Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg 214(5):605–613

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Metsemakers WJ et al (2018) Definition of infection after fracture fixation: a systematic review of randomized controlled trials to evaluate current practice. Injury 49(3):497–504

    CAS  PubMed  Google Scholar 

  26. Izakovicova P, Borens O, Trampuz A (2019) Periprosthetic joint infection: current concepts and outlook. EFORT Open Rev 4(7):482–494

    PubMed  PubMed Central  Google Scholar 

  27. Furustrand Tafin U et al (2015) Staphylococcal biofilm formation on the surface of three different calcium phosphate bone grafts: a qualitative and quantitative in vivo analysis. J Mater Sci Mater Med 26(3):130

    PubMed  PubMed Central  Google Scholar 

  28. Gellert M et al (2020) Biofilm-active antibiotic treatment improves the outcome of knee periprosthetic joint infection: results from a 6-year prospective cohort study. Int J Antimicrob Agents 55(4):105904

    CAS  PubMed  Google Scholar 

  29. Moriarty TF et al (2016) Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev 1(4):89–99

    PubMed  PubMed Central  Google Scholar 

  30. Mauffrey C et al (2016) The role of biofilm on orthopaedic implants: the ”Holy Grail“ of post-traumatic infection management? Eur J Trauma Emerg Surg 42(4):411–416

    CAS  PubMed  Google Scholar 

  31. Cierny G 3rd, Mader JT, Penninck JJ (2003) A clinical staging system for adult osteomyelitis. Clin Orthop Relat Res 414:7–24

    Google Scholar 

  32. Govaert GAM et al (2020) Diagnosing fracture-related infection: current concepts and recommendations. J Orthop Trauma 34(1):8–17

    PubMed  Google Scholar 

  33. van den Kieboom J et al (2018) Diagnostic accuracy of serum inflammatory markers in late fracture-related infection: a systematic review and meta-analysis. Bone Joint J 100(12):1542–1550

    PubMed  Google Scholar 

  34. Glaudemans A et al (2019) Diagnosing fracture-related infections: can we optimize our nuclear imaging techniques? Eur J Nucl Med Mol Imaging 46(8):1583–1587

    PubMed  Google Scholar 

  35. Gerrickens MWM et al (2018) Three year patency and recurrence rates of revision using distal inflow with a venous interposition graft for high flow brachial artery based arteriovenous fistula. Eur J Vasc Endovasc Surg 55(6):874–881

    PubMed  Google Scholar 

  36. Govaert GA et al (2017) Accuracy of diagnostic imaging modalities for peripheral post-traumatic osteomyelitis—a systematic review of the recent literature. Eur J Nucl Med Mol Imaging 44(8):1393–1407

    PubMed  PubMed Central  Google Scholar 

  37. Kaim A et al (2000) Chronic post-traumatic osteomyelitis of the lower extremity: comparison of magnetic resonance imaging and combined bone scintigraphy/immunoscintigraphy with radiolabelled monoclonal antigranulocyte antibodies. Skelet Radiol 29(7):378–386

    CAS  Google Scholar 

  38. Goebel M et al (2007) Diagnosis of chronic osteitis of the bones in the extremities. Relative value of F‑18 FDG-PET. Unfallchirurg 110(10):859–866

    CAS  PubMed  Google Scholar 

  39. Govaert GAM, Glaudemans A (2016) Nuclear medicine imaging of posttraumatic osteomyelitis. Eur J Trauma Emerg Surg 42(4):397–410

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Govaert GAM et al (2018) Diagnostic strategies for posttraumatic osteomyelitis: a survey amongst Dutch medical specialists demonstrates the need for a consensus protocol. Eur J Trauma Emerg Surg 44(3):417–426

    CAS  PubMed  Google Scholar 

  41. Lemans JVC et al (2019) The diagnostic accuracy of (18)F-FDG PET/CT in diagnosing fracture-related infections. Eur J Nucl Med Mol Imaging 46(4):999–1008

    CAS  PubMed  Google Scholar 

  42. Govaert GAM et al (2018) High diagnostic accuracy of white blood cell scintigraphy for fracture related infections: results of a large retrospective single-center study. Injury 49(6):1085–1090

    CAS  PubMed  Google Scholar 

  43. Obremskey WT et al (2020) Musculoskeletal infection in orthopaedic trauma: assessment of the 2018 international consensus meeting on musculoskeletal infection. J Bone Joint Surg Am 102(10):e44

    PubMed  Google Scholar 

  44. Schafer P et al (2008) Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Clin Infect Dis 47(11):1403–1409

    PubMed  Google Scholar 

  45. Achermann Y et al (2014) Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen. Clin Microbiol Rev 27(3):419–440

    PubMed  PubMed Central  Google Scholar 

  46. Kuehl R et al (2019) Time-dependent differences in management and microbiology of orthopaedic internal fixation-associated infections: an observational prospective study with 229 patients. Clin Microbiol Infect 25(1):76–81

    CAS  PubMed  Google Scholar 

  47. Ma X et al (2018) Epidemiology, microbiology and therapeutic consequences of chronic osteomyelitis in northern China: a retrospective analysis of 255 patients. Sci Rep 8(1):14895

    PubMed  PubMed Central  Google Scholar 

  48. Karbysheva S et al (2020) Comparison of sonication with chemical biofilm dislodgement methods using chelating and reducing agents: implications for the microbiological diagnosis of implant associated infection. PLoS ONE 15(4):e231389

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Renz N et al (2015) Sonication in the diagnosis of periprosthetic infections : significance and practical implementation. Orthopade 44(12):942–945

    CAS  PubMed  Google Scholar 

  50. Trampuz A et al (2006) Sonication of explanted prosthetic components in bags for diagnosis of prosthetic joint infection is associated with risk of contamination. J Clin Microbiol 44(2):628–631

    PubMed  PubMed Central  Google Scholar 

  51. Onsea J et al (2018) Accuracy of tissue and sonication fluid sampling for the diagnosis of fracture-related infection: a systematic review and critical appraisal. J Bone Jt Infect 3(4):173–181

    PubMed  PubMed Central  Google Scholar 

  52. Morgenstern C et al (2018) Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection. Diagn Microbiol Infect Dis 90(2):115–119

    CAS  PubMed  Google Scholar 

  53. Morgenstern C et al (2018) Multiplex polymerase chain reaction and microcalorimetry in synovial fluid: can pathogen-based detection assays improve the diagnosis of septic arthritis? J Rheumatol 45(11):1588–1593

    CAS  PubMed  Google Scholar 

  54. Omar M et al (2016) Diagnostic performance of swab PCR as an alternative to tissue culture methods for diagnosing infections associated with fracture fixation devices. Injury 47(7):1421–1426

    PubMed  Google Scholar 

  55. Parvizi J et al (2018) The 2018 definition of periprosthetic hip and knee infection: an evidence-based and validated criteria. J Arthroplasty 33(5):1309–1314.e2

    PubMed  Google Scholar 

  56. Schmidt AH, Swiontkowski MF (2000) Pathophysiology of infections after internal fixation of fractures. J Am Acad Orthop Surg 8(5):285–291

    CAS  PubMed  Google Scholar 

  57. Foster AL et al (2020) Fracture-related infection: current methods for prevention and treatment. Expert Rev Anti Infect Ther 18(4):307–321

    CAS  PubMed  Google Scholar 

  58. Kortram K et al (2017) Risk factors for infectious complications after open fractures; a systematic review and meta-analysis. Int Orthop 41(10):1965–1982

    PubMed  Google Scholar 

  59. Depypere M et al (2020) Recommendations for systemic antimicrobial therapy in fracture-related infection: a consensus from an international expert group. J Orthop Trauma 34(1):30–41

    PubMed  Google Scholar 

  60. Li HK et al (2015) Oral versus intravenous antibiotic treatment for bone and joint infections (OVIVA): study protocol for a randomised controlled trial. Trials 16:583

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Metsemakers WJ et al (2020) Evidence-based recommendations for local antimicrobial strategies and dead space management in fracture-related infection. J Orthop Trauma 34(1):18–29

    PubMed  Google Scholar 

  62. Zimmerli W, Sendi P (2019) Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrob Agents Chemother 63(2):e1746–18

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Omar M, Zeckey C, Krettek C et al (2021) Offene Frakturen. Unfallchirurg 124:651–665. https://doi.org/10.1007/s00113-021-01042-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Dierk Clausen.

Ethics declarations

Interessenkonflikt

J.-D. Clausen, P. Mommsen, T. Omar Pacha, M. Winkelmann, C. Krettek und M. Omar geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Mohamend Omar, Hannover

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausen, JD., Mommsen, P., Omar Pacha, T. et al. Management von frakturassoziierten Infektionen. Unfallchirurg 125, 41–49 (2022). https://doi.org/10.1007/s00113-021-01116-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-021-01116-1

Schlüsselwörter

Keywords

Navigation