Skip to main content

Systematik der plastischen Defektrekonstruktion am Fuß

A systematic approach to plastic surgical foot reconstruction

Zusammenfassung

Hintergrund

Weichteilverletzungen am Fuß nach Traumata sind sehr häufig und bedingen eine individuelle Rekonstruktion.

Ziel der Arbeit

Es werden Empfehlungen zur Therapie von Weichteilverletzungen des Fußes formuliert.

Material und Methoden

Zunächst werden die Kriterien, postoperative Nachbehandlung und Komplikationen der Hautweichteilrekonstruktion des Fußes erörtert, bevor die therapeutische Strategie entsprechend der Lokalisation erläutert und mit exemplarischen Beispielen aus dem eigenen Patientengut verdeutlicht wird.

Ergebnisse

Entsprechend der Lokalisation, der dreidimensionalen Ausdehnung des Defekts, dem Anforderungsprofil des Patienten und den vorhandenen Begleiterkrankungen wird das Vorgehen anhand standardisierter rekonstruktiver Prinzipien geplant und den individuellen Patientenfaktoren angepasst. Lokale und gestielte Lappenplastiken können am Fuß eingesetzt werden, haben aber eine vergleichsweise erhöhte Komplikationsrate, sodass nach entsprechender präoperativer Abklärung der Gefäßsituation am Fuß häufig freie Lappenplastiken angewandt werden, die aufgrund ihrer Versatilität sehr individuell an die lokalen Anforderungen und die Patientenbedürfnisse adaptierfähig sind. Freie Lappenplastiken erfordern postoperativ ein Lappentraining.

Schlussfolgerung

Eine präzise präoperative Planung der Rekonstruktion und Abklärung der Vaskularisation bilden die Grundlagen für eine erfolgreiche Weichteilrekonstruktion des Fußes, deren Ziele das Erreichen von stabilen Hautweichteilen, einer belastbaren Fußsohle ohne Scherkraftwirkung, das Ermöglichen der Schuhversorgung und der Erhalt der Sensibilität sind.

Abstract

Background

Soft tissue defects of the foot are very common sequelae after trauma and require an individual reconstructive approach.

Objective

Recommendations for the treatment of soft tissue injuries to the foot are given.

Material and methods

The criteria of soft tissue reconstruction, postoperative follow-up and complications are first discussed before the therapeutic approach is explained depending on the reconstruction site. Case examples are given for illustration.

Results

Decision making for soft tissue reconstruction of the foot is based on the location, the 3‑dimensional extent of the defect, the patient requirements and concomitant diseases. Standardized treatment algorithms are usually applied that need to be adapted according to individual patient factors. Randomized and local pedicled flaps can be applied for foot reconstruction; however, these options involve a significant risk of complications. Consequently, free flaps are frequently indicated after appropriate preoperative diagnostics of the perfusion of the foot. Due to the vast variety of donor sites, free flaps allow an individualized reconstruction, which is adapted to local and patient requirements.

Conclusion

Precise preoperative reconstructive planning and analysis of the vascularization form the foundation for a successful soft tissue reconstruction of the foot. The aims of the individualized approach to soft tissue reconstruction of the foot are stable soft tissue coverage, resistance to weight bearing of the sole of the foot, the ability to wear normal shoes and maintenance of sensibility.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. 1.

    Attinger C, Cooper P (2001) Soft tissue reconstruction for calcaneal fractures or osteomyelitis. Orthop Clin North Am 32:135–170. https://doi.org/10.1016/S0030-5898(05)70199-1

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Baumeister SP, Spierer R, Erdmann D et al (2003) A realistic complication analysis of 70 sural artery flaps in a multimorbid patient group. Plast Reconstr Surg 112:129–140. https://doi.org/10.1097/01.PRS.0000066167.68966.66

    Article  PubMed  Google Scholar 

  3. 3.

    Bertelli JA, Duarte HE (1997) The plantar marginal septum cutaneous island flap: a new flap in forefoot reconstruction. Plast Reconstr Surg 99:1390–1395. https://doi.org/10.1097/00006534-199704001-00029

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Blechschmidt E (1934) Die Architektur des Fersenpolsters. Morphol Jahrb 9:20–68

    Google Scholar 

  5. 5.

    Deutsche Gesellschaft für Unfallchirurgie e. V. (DGU): Akute und chronische exogene Osteomyelitis langer Röhrenknochen des Erwachsenen. Awmf-Leitlinie Nr. 012-033

  6. 6.

    Donas KP, Schwindt A, Schönefeld T et al (2009) Below-knee bare nitinol stent placement in high-risk patients with critical limb ischaemia and unlimited supragenicular inflow as treatment of choice. Eur J Vasc Endovasc Surg 37:688–693. https://doi.org/10.1016/j.ejvs.2009.01.023

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ensat F, Hladik M, Larcher L et al (2014) The distally based peroneus brevis muscle flap-clinical series and review of the literature. Microsurgery 34:203–208. https://doi.org/10.1002/micr

    Article  PubMed  Google Scholar 

  8. 8.

    Fortington LV, Geertzen JHB, Van Netten JJ et al (2013) Short and long term mortality rates after a lower limb amputation. Eur J Vasc Endovasc Surg 46:124–131. https://doi.org/10.1016/j.ejvs.2013.03.024

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Fox CM, Beem HM, Wiper J et al (2015) Muscle versus fasciocutaneous free flaps in heel reconstruction: systematic review and meta-analysis discussion. J Reconstr Microsurg 31:59–66. https://doi.org/10.1055/s-0034-1395941

    Article  PubMed  Google Scholar 

  10. 10.

    Franco MJ, Surgery R, Euclid S et al (2017) Lower extremity reconstruction with free gracilis flaps. J Reconstr Microsurg 33:218–224. https://doi.org/10.1055/s-0036-1597568.Lower

    Article  PubMed  Google Scholar 

  11. 11.

    Gopal S, Majumder S, Batchelor AGB et al (2000) Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J Bone Joint Surg Br 82:959–966. https://doi.org/10.1302/0301-620X.82B7.10482

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Guillier D, Cherubino M, Oranges CM et al (2020) Systematic reappraisal of the reverse-flow medial plantar flap: from vascular anatomical concepts to surgical applications. J Plast Reconstr Aesthet Surg 73:421–433. https://doi.org/10.1016/j.bjps.2019.10.019

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Habazettl H, Stahn A, Nitsche A et al (2016) Microvascular responses to (hyper-)gravitational stress by short-arm human centrifuge: arteriolar vasoconstriction and venous pooling. Eur J Appl Physiol 116:57–65. https://doi.org/10.1007/s00421-015-3241-6

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Heidekrueger PI, Ehrl D, Prantl L et al (2019) Microsurgical reconstruction of the plantar foot: long-term functional outcomes and quality of life. J Reconstr Microsurg 35:379–388. https://doi.org/10.1055/s-0038-1677038

    Article  PubMed  Google Scholar 

  15. 15.

    Heijenbrok-Kal MH, Kock MCJM, Hunink MGM (2007) Lower extremity arterial disease: multidetector CT angiography—meta-analysis. Radiology 245:433–439. https://doi.org/10.1148/radiol.2451061280

    Article  PubMed  Google Scholar 

  16. 16.

    Hidalgo DA, Shaw WW (1986) Reconstruction of foot injuries. Clin Plast Surg 13:663–680

    CAS  Article  Google Scholar 

  17. 17.

    Hodges GJ, Johnson JM (2009) Adrenergic control of the human cutaneous circulation. Appl Physiol Nutr Metab 34:829–839. https://doi.org/10.1139/H09-076

    Article  PubMed  Google Scholar 

  18. 18.

    Huang CC, Chang CH, Hsu H et al (2014) Endovascular revascularization and free tissue transfer for lower limb salvage. J Plast Reconstr Aesthet Surg 67:1407–1414. https://doi.org/10.1016/j.bjps.2014.05.026

    Article  PubMed  Google Scholar 

  19. 19.

    Jones S, Patel MR, Dai D et al (2013) High mortality risks after major lower extremity amputation in medicare patients with peripheral artery disease. Am Heart J 165:809–815. https://doi.org/10.1016/j.ahj.2012.12.002

    Article  PubMed  Google Scholar 

  20. 20.

    Karir A, Stein MJ, Shiga S, Zhang J (2020) Reconstruction of lower extremity defects using the serratus anterior free flap: a systematic review and retrospective case series. J Reconstr Microsurg 36:116–126. https://doi.org/10.1055/s-0039-1697920

    Article  PubMed  Google Scholar 

  21. 21.

    Kolbenschlag J, Bredenbroeker P, Daigeler A et al (2014) Changes of oxygenation and hemoglobin-concentration in lower extremity free flaps during dangling. J Reconstr Microsurg 30:319–328. https://doi.org/10.1055/s-0033-1363773

    Article  PubMed  Google Scholar 

  22. 22.

    Kolbenschlag J, Bredenbroeker P, Lehnhardt M et al (2015) Advanced microcirculatory parameters of lower extremity free flaps during dangling and their influencing factors. J Reconstr Microsurg 31:500–507. https://doi.org/10.1055/s-0035-1554940

    Article  PubMed  Google Scholar 

  23. 23.

    Kolbenschlag J, Ruikis A, Faulhaber L et al (2019) Elastic wrapping of lower extremity free flaps during dangling improves microcirculation and reduces pain as well as edema. J Reconstr Microsurg 35:522–528. https://doi.org/10.1055/s-0039-1688451

    Article  PubMed  Google Scholar 

  24. 24.

    Kremer T, Bauer M, Zahn P et al (2016) Perioperatives management in der Mikrochirurgie – Konsensus-statement der Deutschsprachigen Arbeitsgemeinscha. Handchir Mikrochir Plast Chir 48:205–211. https://doi.org/10.1055/s-0042-108806

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lenz Y, Gross R, Penna V et al (2018) Evaluation of the Implantable doppler probe for free flap monitoring in lower limb reconstruction. J Reconstr Microsurg 34:218–226. https://doi.org/10.1055/s-0037-1608628

    Article  PubMed  Google Scholar 

  26. 26.

    Levin S, Nunley JA (1993) The management of soft-tissue problems associated with calcaneal fractures. Clin Orthop Relat Res 290:151–156

    Google Scholar 

  27. 27.

    Lorenzo AR, Lin CH, Lin CH et al (2011) Selection of the recipient vein in microvascular flap reconstruction of the lower extremity: analysis of 362 free-tissue transfers. J Plast Reconstr Aesthet Surg 64:649–655. https://doi.org/10.1016/j.bjps.2010.07.028

    Article  PubMed  Google Scholar 

  28. 28.

    Manchot C (1889) Die Hautarterien des menschlichen Körpers. Vogel, Leipzig

    Google Scholar 

  29. 29.

    Menke H, Baumeister S, Erdmann D et al (2000) Therapeutische Optionen zur Behandlung von Fersendefekten Vorstellung eines Algorithmus zur Therapiestrategie. Chirurg 71:311–318

    CAS  Article  Google Scholar 

  30. 30.

    Meyer-Marcotty MV, Sutmoeller K, Kopp J, Vogt PM (2012) Postoperative insole-paedobarographic gait analysis for patients with flap coverages of weight-bearing and non-weight-bearing areas of the foot. J Plast Reconstr Aesthet Surg 65:482–488. https://doi.org/10.1016/j.bjps.2011.11.025

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Meyer E, Raupach R, Lell M et al (2012) Frequency split metal artifact reduction (FSMAR) in computed tomography. Med Phys 39:1904–1916. https://doi.org/10.1118/1.3691902

    Article  PubMed  Google Scholar 

  32. 32.

    Mir Y, Mir L (1954) Functional graft of the heel. Plast Reconstr Surg 14:444–450. https://doi.org/10.1097/00006534-195412000-00007

    Article  Google Scholar 

  33. 33.

    Morrison WA, Crabb DMK, O’Brien BMC, Jenkins A (1983) The instep of the foot as a fasciocutaneous island and as a free flap for heel defects. Plast Reconstr Surg 72:56–65. https://doi.org/10.1097/00006534-198307000-00013

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Myerson MS, McGarvey WC, Henderson MR, Hakim J (1994) Morbidity after crush injuries to the foot. J Orthop Trauma 8:343–349. https://doi.org/10.1097/00005131-199408000-00012

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Nohira K, Shintomi Y, Sugihara T, Ohura T (1989) Replacing losses in kind: Improved sensation following heel reconstruction using the free instep flap. J Reconstr Microsurg 5:1–6. https://doi.org/10.1055/s-2007-1006845

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Rab M, Grill CJ, Dobrovits A, Koller R (2008) Lokale Lappenplastiken zur Defektdeckung am Fuß und Sprunggelenk. Fuss Sprunggelenk 6:78–85. https://doi.org/10.1016/j.fuspru.2008.03.008

    Article  Google Scholar 

  37. 37.

    Rein S, Gazyakan E, Kneser U, Kremer T (2021) Die freie Serratus Carpaccio Lappenplastik: Indikation und Technik. Handchir Mikrochir Plast Chir. https://doi.org/10.1055/a-1439-9873

    Article  PubMed  Google Scholar 

  38. 38.

    Reuben CM, Bastidas N, Sharma S (2010) Power-assisted suction lipectomy of fasciocutaneous flaps in the extremities. Ann Plast Surg 65:60–65. https://doi.org/10.1097/SAP.0b013e3181c8f4f3

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Rozen WM, Chubb D, Whitakter IS, Acosta R (2010) The efficacy of postoperative monitoring: a single surgeon comparison of clinical monitoring and the implantable doppler probe in 547 consecutive free flaps. Microsurgery 30:105–110. https://doi.org/10.1002/micr

    Article  PubMed  Google Scholar 

  40. 40.

    Santanelli Di Pompeo F, Pugliese P, Sorotos M et al (2015) Microvascular reconstruction of complex foot defects, a new anatomo-functional classification. Injury 46:1656–1663. https://doi.org/10.1016/j.injury.2015.05.002

    Article  PubMed  Google Scholar 

  41. 41.

    Scaglioni MF, Rittirsch D, Giovanoli P (2018) Reconstruction of the heel, middle foot sole, and plantar forefoot with the medial plantar artery perforator flap: clinical experience with 28 cases. Plast Reconstr Surg 141:200–208. https://doi.org/10.1097/PRS.0000000000003975

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Scheufler O, Kalbermatten D, Pierer G (2007) Instep free flap for plantar soft tissue reconstructions: indications and options. Microsurgery 27:174–180. https://doi.org/10.1002/micr

    Article  PubMed  Google Scholar 

  43. 43.

    Schirmer S, Ritter RG, Fansa H (2013) Vascular surgery, microsurgery and supramicrosurgery for treatment of chronic diabetic foot ulcers to prevent amputations. Plos One 8:1–14. https://doi.org/10.1371/journal.pone.0074704

    CAS  Article  Google Scholar 

  44. 44.

    Schoenle P, Gazyakan E, Kremer T et al (2018) The chimeric versatility of the subscapular system revisited: backup options, coverage for bone transplants and vascularized lymph nodes. Plast Reconstr Surg Glob Open 6:1–4. https://doi.org/10.1097/GOX.0000000000001765

    Article  Google Scholar 

  45. 45.

    Schwabegger AH, Hussl H, Rainer C et al (1998) Clinical experience and indications of the free serratus fascia flap: a report of 21 cases. Plast Reconstr Surg 102:1939–1946

    CAS  Article  Google Scholar 

  46. 46.

    Serafin D (1996) Atlas of microsurgical composite tissue transplantation. W.B. Saunders,

    Google Scholar 

  47. 47.

    Song D, Yang X, Wu Z et al (2016) Anatomic basis and clinical application of the distally based medialis pedis flaps. Surg Radiol Anat 38:213–221. https://doi.org/10.1007/s00276-015-1532-6

    Article  PubMed  Google Scholar 

  48. 48.

    Struckmann V, Hirche C, Struckmann F et al (2014) Free and pedicled flaps for reconstruction of the weightbearing sole of the foot: a comparative analysis of functional results. J Foot Ankle Surg 53:727–734. https://doi.org/10.1053/j.jfas.2014.06.009

    Article  PubMed  Google Scholar 

  49. 49.

    Tan O, Yuce I, Kantarc M, Algan S (2011) Evaluation of lower-limb arteries with multidetector computed tomography angiography prior to free flap surgery: a radioanatomic study. J Reconstr Microsurg 27:199–206. https://doi.org/10.1055/s-0030-1270538

    Article  PubMed  Google Scholar 

  50. 50.

    Taylor GI, Palmer JH (1987) The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 40:113–141. https://doi.org/10.1016/0007-1226(87)90185-8

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Tscherne H, Oestern HJ (1982) Die Klassifizierung des Weichteilschadens bei offenen und geschlossenen Frakturen. Unfallheilkunde 85:111–115

    CAS  PubMed  Google Scholar 

  52. 52.

    Tuncer S, Sezgin B, Sencan A, Sari A (2020) Free serratus fascia flap for reconstruction of soft tissue defects involving the distal upper and lower extremity. Ann Plast Surg 84:672–678. https://doi.org/10.1097/sap.0000000000002084

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Xiong L, Gazyakan E, Kremer T et al (2016) Free flaps for reconstruction of soft tissue defects in lower extremity: a meta-analysis on microsurgical outcome and safety. Microsurgery 36:511–524. https://doi.org/10.1002/micr

    Article  PubMed  Google Scholar 

  54. 54.

    Yoshimatsu H, Yamamoto T, Hayashi N et al (2017) Reconstruction of the ankle complex wound with a fabricated superficial circumflex iliac artery chimeric flap including the sartorius muscle: a case report. Microsurgery 37:421–425. https://doi.org/10.1002/micr

    Article  PubMed  Google Scholar 

  55. 55.

    Zwipp H (1994) Chirurgie des Fußes. Springer, Wien

    Book  Google Scholar 

  56. 56.

    Zwipp H, Rammelt S (2014) Tscherne Unfallchirurgie: Fuß https://doi.org/10.1007/978-3-540-68883-9

    Book  Google Scholar 

Download references

Danksagung

Die Autoren danken Christian Retschke (Leipzig) für die Unterstützung beim Erstellen der Abbildungen.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Susanne Rein MBA.

Ethics declarations

Interessenkonflikt

S. Rein und T. Kremer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Redaktion

Peter M. Vogt, Hannover

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rein, S., Kremer, T. Systematik der plastischen Defektrekonstruktion am Fuß. Unfallchirurg 124, 797–806 (2021). https://doi.org/10.1007/s00113-021-01075-7

Download citation

Schlüsselwörter

  • Freie Lappenplastik
  • Komplikationen
  • Sensbilität
  • Vaskularisation
  • Weichteilverletzung

Keywords

  • Complications
  • Free flap
  • Sensibility
  • Soft tissue injury
  • Vascular supply