Skip to main content
Log in

Diamond-Konzept zur Behandlung von Pseudarthrosen und Knochendefekten

Diamond concept for treatment of nonunions and bone defects

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Pseudarthrosen stellen ein sehr heterogenes, seltenes und mitunter sehr komplexes Krankheitsbild dar. Die Ursachen, die Lokalisation und der Grad der Ausprägung zeigen eine hohe Varianz, was die Etablierung von einheitlichen Behandlungsstandards erschwert. Trotzdem unterliegt der Prozess der Knochenheilung einigen wesentlichen Faktoren, die für einen Behandlungserfolg gewährleistet sein sollten. Diese Faktoren wurden im Laufe der Jahre immer besser erforscht und fanden Berücksichtigung in dem Diamond-Konzept, das 2007 erstmals von Giannoudis et al. publiziert wurde. Damit steht dem Behandler nun ein Konzept zur Verfügung, das die Heterogenität des Krankheitsbildes nicht außer Acht lässt und eine Entscheidungshilfe für ein Therapieregime im individuellen Fall bietet, um die besten biologischen und mechanischen Bedingungen zu gewährleisten. Das Diamond-Konzept findet mittlerweile eine breite Verwendung, und zahlreiche Studien haben bereits eine erfolgreiche Anwendung demonstriert. Es versteht sich eher als ein Rahmenwerk, bei dem die unterschiedlichen verfügbaren Therapieoptionen (Knochenersatzstoffe, mesenchymale Stammzellen, Osteosyntheseverfahren etc.) in die einzelnen Faktoren einfließen, und bietet dem Behandler damit einen gewissen Freiraum in der Wahl seiner Werkzeuge. Zudem ist es kein starres Korsett und in seinen Faktoren dem medizinisch-wissenschaftlichen Fortschritt unterworfen, sodass es spannend bleibt, welche neuen Entwicklungen in Zukunft einfließen werden.

Abstract

Nonunions represent a very heterogeneous, rare and sometimes very complex disease picture. The causes, localization and degree of expression show a very high variability, which makes it difficult to establish uniform treatment standards. Nevertheless, the process of bone healing is subject to some essential factors, which should be ensured for a successful treatment. Over the years these factors have been better researched and were taken into consideration for the diamond concept, which was first published by Giannoudis et al. in 2007. This provides the physician with a concept that does not neglect the heterogeneity of the disease picture and is an aid to decision making for the treatment regimen in individual cases in order to guarantee the best biological and mechanical conditions. The diamond concept is nowadays widely used and many studies have already demonstrated a successful application. It must be understood as a framework, in which the various treatment options available (bone substitute materials, mesenchymal stem cells, osteosynthesis procedures etc.) are incorporated into the individual factors and therefore provides the physician with a certain freedom of choice in the selection of tools. Additionally, it is not a rigid corset and subject to medical scientific progress in its factors, so that it is exciting to see which new developments will be incorporated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Andrzejowski P, Giannoudis PV (2019) The “diamond concept” for long bone non-union management. J Orthop Traumatol 20:21

    PubMed  PubMed Central  Google Scholar 

  2. Bigoni M, Turati M, Zanchi N et al (2019) Clinical applications of bioactive glass S53P4 in bone infections: a systematic review. Eur Rev Med Pharmacol Sci 23:240–251

    CAS  PubMed  Google Scholar 

  3. Blokhuis TJ, Calori GM, Schmidmaier G (2013) Autograft versus BMPs for the treatment of non-unions: what is the evidence? Injury 44(1):S40–42

    PubMed  Google Scholar 

  4. Bormann N, Pruss A, Schmidmaier G et al (2010) In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg 130:143–149

    CAS  PubMed  Google Scholar 

  5. Bortolin M, De Vecchi E, Romano CL et al (2016) Antibiofilm agents against MDR bacterial strains: is bioactive glass BAG-S53P4 also effective? J Antimicrob Chemother 71:123–127

    CAS  PubMed  Google Scholar 

  6. Bortolin M, Romano CL, Bidossi A et al (2018) BAG-S53P4 as bone graft extender and antimicrobial activity against gentamicin- and vancomycin-resistant bacteria. Future Microbiol 13:525–533

    CAS  PubMed  Google Scholar 

  7. Calori GM, Colombo M, Mazza E et al (2013) Monotherapy vs. polytherapy in the treatment of forearm non-unions and bone defects. Injury 44(1):S63–69

    PubMed  Google Scholar 

  8. Calori GM, Giannoudis PV (2011) Enhancement of fracture healing with the diamond concept: the role of the biological chamber. Injury 42:1191–1193

    PubMed  Google Scholar 

  9. Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355:S132–147

    Google Scholar 

  10. Colnot C, Zhang X, Knothe Tate ML (2012) Current insights on the regenerative potential of the periosteum: molecular, cellular, and endogenous engineering approaches. J Orthop Res 30:1869–1878

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Copuroglu C, Calori GM, Giannoudis PV (2013) Fracture non-union: who is at risk? Injury 44:1379–1382

    PubMed  Google Scholar 

  12. Cox G, Jones E, Mcgonagle D et al (2011) Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop 35:951–956

    PubMed  PubMed Central  Google Scholar 

  13. Cox G, Mcgonagle D, Boxall SA et al (2011) The use of the reamer-irrigator-aspirator to harvest mesenchymal stem cells. J Bone Joint Surg Br 93:517–524

    CAS  PubMed  Google Scholar 

  14. Cuthbert R, Boxall SA, Tan HB et al (2012) Single-platform quality control assay to quantify multipotential stromal cells in bone marrow aspirates prior to bulk manufacture or direct therapeutic use. Cytotherapy 14:431–440

    CAS  PubMed  Google Scholar 

  15. Cuthbert RJ, Churchman SM, Tan HB et al (2013) Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone 57:484–492

    CAS  PubMed  Google Scholar 

  16. Dimitriou R, Giannoudis PV (2005) Discovery and development of BMPs. Injury 36(3):S28–33

    PubMed  Google Scholar 

  17. Dimitriou R, Mataliotakis GI, Angoules AG et al (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(2):S3–15

    PubMed  Google Scholar 

  18. Dinopoulos H, Dimitriou R, Giannoudis PV (2012) Bone graft substitutes: what are the options? Surgeon 10:230–239

    PubMed  Google Scholar 

  19. Dua A, Kiran K, Malhotra R et al (2010) Acetabular reconstruction using fresh frozen bone allograft. Hip Int 20:143–149

    PubMed  Google Scholar 

  20. Fayaz HC, Giannoudis PV, Vrahas MS et al (2011) The role of stem cells in fracture healing and nonunion. Int Orthop 35:1587–1597

    PubMed  PubMed Central  Google Scholar 

  21. Giannoudis PV, Ahmad MA, Mineo GV et al (2013) Subtrochanteric fracture non-unions with implant failure managed with the “Diamond” concept. Injury 44(1):S76–81

    PubMed  Google Scholar 

  22. Giannoudis PV, Calori GM, Begue T et al (2013) Bone regeneration strategies: current trends but what the future holds? Injury 44(1):S1–2

    PubMed  Google Scholar 

  23. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(4):S3–6

    PubMed  Google Scholar 

  24. Giannoudis PV, Einhorn TA, Schmidmaier G et al (2008) The diamond concept—open questions. Injury 39(2):S5–8

    PubMed  Google Scholar 

  25. Giannoudis PV, Gudipati S, Harwood P et al (2015) Long bone non-unions treated with the diamond concept: a case series of 64 patients. Injury 46(8):S48–54

    PubMed  Google Scholar 

  26. Giannoudis PV, Kanakaris NK, Einhorn TA (2007) Interaction of bone morphogenetic proteins with cells of the osteoclast lineage: review of the existing evidence. Osteoporos Int 18:1565–1581

    CAS  PubMed  Google Scholar 

  27. Habibovic P, de Groot K (2007) Osteoinductive biomaterials—properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32

    CAS  PubMed  Google Scholar 

  28. Harwood PJ, Ferguson DO (2015) (ii) An update on fracture healing and non-union. Orthop Trauma 29:228–242

    Google Scholar 

  29. Hassan HT, El-Sheemy M (2004) Adult bone-marrow stem cells and their potential in medicine. J R Soc Med 97:465–471

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Haubruck P, Ober J, Heller R et al (2018) Complications and risk management in the use of the reaming-irrigator-aspirator (RIA) system: RIA is a safe and reliable method in harvesting autologous bone graft. PLoS ONE 13:e196051

    PubMed  PubMed Central  Google Scholar 

  31. Haubruck P, Schmidmaier G (2017) Susceptibility to infections and behavior of stainless steel : comparison with titanium implants in traumatology. Unfallchirurg 120:110–115

    PubMed  Google Scholar 

  32. Haubruck P, Tanner MC, Vlachopoulos W et al (2018) Comparison of the clinical effectiveness of bone morphogenic protein (BMP) -2 and -7 in the adjunct treatment of lower limb nonunions. Orthop Traumatol Surg Res 104:1241–1248

    PubMed  Google Scholar 

  33. Hayda RA, Brighton CT, Esterhai JL Jr. (1998) Pathophysiology of delayed healing. Clin Orthop Relat Res 355:S31–40

    Google Scholar 

  34. Jagodzinski M, Krettek C (2007) Effect of mechanical stability on fracture healing—an update. Injury 38(1):S3–10

    PubMed  Google Scholar 

  35. Kanakaris NK, Morell D, Gudipati S et al (2011) Reaming irrigator aspirator system: early experience of its multipurpose use. Injury 42(4):S28–34

    PubMed  Google Scholar 

  36. Kouroupis D, Baboolal TG, Jones E et al (2013) Native multipotential stromal cell colonization and graft expander potential of a bovine natural bone scaffold. J Orthop Res 31:1950–1958

    CAS  PubMed  Google Scholar 

  37. Kuehlfluck P, Moghaddam A, Helbig L et al (2015) RIA fractions contain mesenchymal stroma cells with high osteogenic potency. Injury 46(8):S23–32

    PubMed  Google Scholar 

  38. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41:27–37 (table of contents)

    PubMed  Google Scholar 

  39. Miska M, Findeisen S, Tanner M et al (2016) Treatment of nonunions in fractures of the humeral shaft according to the diamond concept. Bone Joint J 98-B:81–87

    CAS  PubMed  Google Scholar 

  40. Miska M, Perschka S, Haubruck P et al (2018) Ursachen für Therapieversagen und Behandlungsoptionen nach gescheiterter Pseudarthrosentherapie mit dem Diamant Konzept

    Google Scholar 

  41. Miska M, Schmidmaier G, Weber MA (2017) Bildgebung bei fehlender Frakturheilung/Pseudarthrosen. In: Weber MA, Streich N (Hrsg) Kompendium Orthopädische Bildgebung. Springer, Berlin, Heidelberg, S 407–422

    Google Scholar 

  42. Moghaddam A, Zietzschmann S, Bruckner T et al (2015) Treatment of atrophic tibia non-unions according to “diamond concept”: results of one- and two-step treatment. Injury 46(4):S39–50

    PubMed  Google Scholar 

  43. Mutschler W, Hontzsch D (2017) Steel or titanium for osteosynthesis? Unfallchirurg 120:94–95

    CAS  PubMed  Google Scholar 

  44. Nousiainen MT, Sen MK, Mintz DN et al (2010) The use osteochondral allograft in the treatment of a severe femoral head fracture. J Orthop Trauma 24:120–124

    PubMed  Google Scholar 

  45. Ozdemir MT, Kir MC (2011) Repair of long bone defects with demineralized bone matrix and autogenous bone composite. Indian J Orthop 45:226–230

    PubMed  PubMed Central  Google Scholar 

  46. Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 138:175–196

    Google Scholar 

  47. Poon B, Kha T, Tran S et al (2016) Bone morphogenetic protein‑2 and bone therapy: successes and pitfalls. J Pharm Pharmacol 68:139–147

    CAS  PubMed  Google Scholar 

  48. Rankin EA, Metz CW Jr. (1970) Management of delayed union in early weight-bearing treatment of the fractured tibia. J Trauma 10:751–759

    CAS  PubMed  Google Scholar 

  49. Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16

    CAS  PubMed  Google Scholar 

  50. Sagi HC, Young ML, Gerstenfeld L et al (2012) Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a reamer/irrigator/aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am 94:2128–2135

    PubMed  Google Scholar 

  51. Santolini E, West R, Giannoudis PV (2015) Risk factors for long bone fracture non-union: a stratification approach based on the level of the existing scientific evidence. Injury 46(8):S8–S19

    PubMed  Google Scholar 

  52. Sarmiento A, Schaeffer JF, Beckerman L et al (1977) Fracture healing in rat femora as affected by functional weight-bearing. J Bone Joint Surg Am 59:369–375

    CAS  PubMed  Google Scholar 

  53. Schmidmaier G, Kerstan M, Schwabe P et al (2017) Clinical experiences in the use of a gentamicin-coated titanium nail in tibia fractures. Injury 48:2235–2241

    CAS  PubMed  Google Scholar 

  54. Schmidmaier G, Lucke M, Wildemann B et al (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(2):S105–112

    PubMed  Google Scholar 

  55. Schmidmaier G, Moghaddam A (2015) Long bone nonunion. Z Orthop Unfall 153:659–674 (quiz 675–656)

    CAS  PubMed  Google Scholar 

  56. Schoierer O, Bloess K, Bender D et al (2014) Dynamic contrast-enhanced magnetic resonance imaging can assess vascularity within fracture non-unions and predicts good outcome. Eur Radiol 24:449–459

    PubMed  Google Scholar 

  57. Tomlinson RE, Silva MJ (2013) Skeletal blood flow in bone repair and maintenance. Bone Res 1:311–322

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Toosi S, Naderi-Meshkin H, Kalalinia F et al (2016) Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue. Cell Mol Biol 62:68–74

    CAS  PubMed  Google Scholar 

  59. Walters G, Pountos I, Giannoudis PV (2018) The cytokines and micro-environment of fracture haematoma: current evidence. J Tissue Eng Regen Med 12:e1662–e1677

    CAS  PubMed  Google Scholar 

  60. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:224–247

    PubMed  PubMed Central  Google Scholar 

  61. Wang X, Friis T, Glatt V et al (2017) Structural properties of fracture haematoma: current status and future clinical implications. J Tissue Eng Regen Med 11:2864–2875

    CAS  PubMed  Google Scholar 

  62. Wildemann B, Kadow-Romacker A, Haas NP et al (2007) Quantification of various growth factors in different demineralized bone matrix preparations. J Biomed Mater Res A 81:437–442

    CAS  PubMed  Google Scholar 

  63. Zimmermann G, Moghaddam A (2011) Allograft bone matrix versus synthetic bone graft substitutes. Injury 42(2):S16–21

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Miska.

Ethics declarations

Interessenkonflikt

M. Miska und G. Schmidmaier geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Schmidmaier, Heidelberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miska, M., Schmidmaier, G. Diamond-Konzept zur Behandlung von Pseudarthrosen und Knochendefekten. Unfallchirurg 123, 679–686 (2020). https://doi.org/10.1007/s00113-020-00843-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-020-00843-1

Schlüsselwörter

Keywords

Navigation