Zusammenfassung
Hintergrund
Ein Training unter den Bedingungen einer Blutflussbeschränkung („blood flow restriction“, BFR) wird in jüngerer Zeit als Option für alternatives Training bei Athleten durchgeführt.
Fragestellung
Welcher Einsatz von BFR im Training von Athleten ist sinnvoll?
Material und Methoden
Es wird eine Übersicht über die gängige Literatur zum Thema gegeben.
Ergebnisse
Blood flow restriction scheint eine Möglichkeit zu sein, eine Muskelhypertrophie und -krafterhöhung zu erreichen sowie Parameter der kardiozirkulatorischen Funktion zu verbessern.
Schlussfolgerung
In der Literatur finden sich verschiedene Ansätze zum Einsatz von BFR bei Athleten. Die Ansätze unterscheiden sich in Häufigkeit, eingesetzter Kraft, Dauer und schließlich auch der Umsetzung der Blutflussunterdrückung. Eindeutige Trainingsempfehlungen können derzeit nicht gegeben werden. Es bleibt dabei, dass das individuelle Abwägen der Möglichkeiten und die überwachte Umsetzung durch den jeweiligen Trainer notwendig sind.
Abstract
Background
Training under conditions of blood flow restriction (BFR) has recently been advocated as an option for alternative training in athletes.
Objective
Does BFR make sense in athlete training?
Material and methods
An overview of the currently available literature is given.
Results
The use of BFR appears to be a possibility to achieve muscle hypertrophy and an increase in muscular strength and can also improve parameters of cardiocirculatory function.
Conclusion
Various approaches for implementation of BFR in athletes can be found in the literature. These approaches differ in the frequency, force used, duration and finally type of implementation of BFR itself. Clear recommendations for training cannot be given to date and the individual weighing up of possibilities and supervised implementation of BFR in athlete training by the trainer are still necessary.
This is a preview of subscription content, access via your institution.
Literatur
- 1.
Hoff J, Helgerud J (2004) Endurance and strength training for soccer players: physiological considerations. Sports Med 34:165–180
- 2.
American College of Sports Medicine (2009) American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 41:687–708
- 3.
Takarada Y et al (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol (1985) 88:2097–2106
- 4.
Yasuda T, Ogasawara R, Sakamaki M, Bemben MG, Abe T (2011) Relationship between limb and trunk muscle hypertrophy following high-intensity resistance training and blood flow-restricted low-intensity resistance training. Clin Physiol Funct Imaging 31:347–351
- 5.
Scott BR, Slattery KM, Sculley DV, Dascombe BJ (2014) Hypoxia and resistance exercise: a comparison of localized and systemic methods. Sports Med 44:1037–1054
- 6.
Pope ZK, Willardson JM, Schoenfeld BJ (2013) Exercise and blood flow restriction. J Strength Cond Res 27:2914–2926
- 7.
Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31:1–4
- 8.
Suga T et al (2012) Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112:3915–3920
- 9.
Takarada Y et al (2000) Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol (1985) 88:61–65
- 10.
Fry CS et al (2010) Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men. J Appl Physiol (1985) 108:1199–1209
- 11.
Fujita S et al (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985) 103:903–910
- 12.
Laurentino GC et al (2012) Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44:406–412
- 13.
Nielsen JL et al (2012) Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction. J Physiol 590:4351–4361
- 14.
Loenneke JP et al (2012) Blood flow restriction: an evidence based progressive model (review). Acta Physiol Hung 99:235–250
- 15.
Ohta H et al (2003) Low-load resistance muscular training with moderate restriction of blood flow after anterior cruciate ligament reconstruction. Acta Orthop Scand 74:62–68
- 16.
Karabulut M, Abe T, Sato Y, Bemben MG (2010) The effects of low-intensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol 108:147–155
- 17.
Cook CJ, Kilduff LP, Beaven CM (2014) Improving strength and power in trained athletes with 3 weeks of occlusion training. Int J Sports Physiol Perform 9:166–172
- 18.
Yamanaka T, Farley RS, Caputo JL (2012) Occlusion training increases muscular strength in division IA football players. J Strength Cond Res 26:2523–2529
- 19.
Luebbers PE, Fry AC, Kriley LM, Butler MS (2014) The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J Strength Cond Res 28:2270–2280
- 20.
Manimmanakorn A, Hamlin MJ, Ross JJ, Taylor R, Manimmanakorn N (2013) Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J Sci Med Sport 16:337–342
- 21.
Manimmanakorn A et al (2013) Effects of resistance training combined with vascular occlusion or hypoxia on neuromuscular function in athletes. Eur J Appl Physiol 113:1767–1774
- 22.
Abe T et al (2005) Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int J Kaatsu Train Res 1:19–23
- 23.
Park S et al (2010) Increase in maximal oxygen uptake following 2‑week walk training with blood flow occlusion in athletes. Eur J Appl Physiol 109:591–600
- 24.
Fortin J-F, Billaut F (2019) Blood-flow restricted warm-up alters muscle hemodynamics and oxygenation during repeated sprints in American Football players. Sports Basel Switz. 7
- 25.
Cruz RS, de Aguiar RA, Turnes T, Pereira KL, Caputo F (2015) Effects of ischemic preconditioning on maximal constant-load cycling performance. J Appl Physiol (1985) 119:961–967
- 26.
Kilding AE, Sequeira GM, Wood MR (2018) Effects of ischemic preconditioning on economy, VO2 kinetics and cycling performance in endurance athletes. Eur J Appl Physiol 118:2541–2549
- 27.
Bailey TG et al (2012) Effect of ischemic preconditioning on lactate accumulation and running performance. Med Sci Sports Exerc 44:2084–2089
Author information
Affiliations
Corresponding author
Ethics declarations
Interessenkonflikt
A.A. Hanke, K. Wiechmann, P. Suckow und S. Rolff geben an, dass kein Interessenkonflikt besteht.
Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.
Additional information
Redaktion
U. Tegtbur, Hannover
Rights and permissions
About this article
Cite this article
Hanke, A.A., Wiechmann, K., Suckow, P. et al. Effektivität des „blood flow restriction training“ im Leistungssport. Unfallchirurg 123, 176–179 (2020). https://doi.org/10.1007/s00113-020-00779-6
Published:
Issue Date:
Schlüsselwörter
- Muskelstärke
- Hypertrophie
- Athleten
- Ischämische Präkonditionierung
- Blood Flow Restriction
Keywords
- Muscle strength
- Hypertrophy
- Athletes
- Ischemic preconditioning
- Blood flow restriction