Skip to main content

Advertisement

Log in

Beeinflussung der Knochenheilung durch häufig verordnete Medikamente

Influence of frequently prescribed drugs on bone healing

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Knochenheilung nach Frakturen wird durch eine Vielzahl verschiedener Faktoren beeinflusst. Neben patientenseitigen Parametern, wie Alter, Geschlecht oder Nebenerkrankungen, haben auch die eingenommenen Medikamente einen wesentlichen Einfluss auf die Knochenheilung.

Ziel der Arbeit

Ziel der vorliegenden Arbeit ist es, einen Überblick über die Auswirkungen von häufig verwendeten Medikamenten, außer spezifischen Osteoporosemedikamenten und Hormonpräparaten, auf die Knochenheilung zu geben.

Material und Methode

Der Überblick wurde auf der Basis einer MEDLINE-Recherche zu den jeweiligen Stichworten durchgeführt.

Ergebnisse

Es wurden verschiedene häufig verwendete Medikamente identifiziert, darunter Kortikosteroide, Antihypertensiva, Diuretika, Antidepressiva, Antiepileptika, Statine, Antibiotika, nichtsteroidale Antirheumatika, Antikoagulanzien und andere. Mit Ausnahme der Antihypertensiva, Thiaziddiuretika und Statine wurden in tierexperimentellen und präklinischen Studien negative Effekte auf die Knochenheilung nachgewiesen. Für die 3 genannten Substanzklassen wurden osteoprotektive Wirkungen publiziert. Klinische Daten beim Menschen sind nur vereinzelt zu finden.

Schlussfolgerung

Die in präklinischen Studien gewonnenen Daten zur Beeinflussung der Frakturheilung belegen Effekte der im Folgenden betrachteten Medikamente. Dabei sind die Wirkungen beim Menschen teilweise noch nicht durch Studien gesichert. Vor dem Hintergrund der im vorliegenden Beitrag zusammengefassten Ergebnisse sollte in kritischen Fällen die weitere Einnahme der Medikamente diskutiert werden.

Abstract

Background

Bone healing after fractures is influenced by many different factors. Besides patient-related factors, such as age, gender and other comorbidities, other drugs taken also have a relevant impact on bone healing.

Objective

The aim of the study was to give an overview of the effects of frequently used drugs on fracture healing, with the exception of specific osteoporosis drugs and hormones.

Material and methods

This overview is based on a medline search with the search string of each pharmacological agent.

Results

Frequently used pharmacological substances were identified, for example corticosteroids, antihypertensive drugs, diuretics, antidepressive drugs, antiepileptics, statins, antibiotics, nonsteroidal anti-inflammatory drugs, anticoagulants and others. Except for antihypertensive drugs, thiazide diuretics and statins, which have osteoprotective effects and stimulate bone healing, all other drugs have negative effects on fracture healing in preclinical and animal studies. Clinical data are scarce.

Conclusion

Data for the effects of the abovementioned pharmacological substances could be found mostly in preclinical studies. The effects of these agents on bone healing in humans has currently not been studied or published. Therefore, the use of these drugs should be discussed carefully in cases with a compromised fracture healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Aaron JE, Francis RM, Peacock M et al (1989) Contrasting microanatomy of idiopathic and corticosteroid-induced osteoporosis. Clin Orthop Relat Res 243:294–305

    Google Scholar 

  2. Adolphson P, Abbaszadegan H, Jonsson U et al (1993) No effects of piroxicam on osteopenia and recovery after Colles’ fracture. A randomized, double-blind, placebo-controlled, prospective trial. Arch Orthop Trauma Surg 112:127–130

    Article  CAS  Google Scholar 

  3. Aubin R, Menard P, Lajeunesse D (1996) Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int 50:1476–1482

    Article  CAS  Google Scholar 

  4. Bauer DC (2003) HMG CoA reductase inhibitors and the skeleton: A comprehensive review. Osteoporos Int 14:273–282

    Article  CAS  Google Scholar 

  5. Bayar A, Turan A, Gulle K et al (2015) The effects of the angiotensin converting enzyme inhibitor enalapril and the angiotensin II type 1 receptor blocker losartan on fracture healing in rats. Clin Invest Med 38:E164–E172

    Article  CAS  Google Scholar 

  6. Bradaschia-Correa V, Josephson AM, Mehta D et al (2017) The selective serotonin reuptake inhibitor fluoxetine directly inhibits osteoblast differentiation and mineralization during fracture healing in mice. J Bone Miner Res 32:821–833

    Article  CAS  Google Scholar 

  7. Canalis E, Delany AM (2002) Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73–81

    Article  CAS  Google Scholar 

  8. Canalis E, Mazziotti G, Giustina A et al (2007) Glucocorticoid-induced osteoporosis: Pathophysiology and therapy. Osteoporos Int 18:1319–1328

    Article  CAS  Google Scholar 

  9. De Vries F, Bracke M, Leufkens HG et al (2007) Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum 56:208–214

    Article  Google Scholar 

  10. Fan HC, Lee HS, Chang KP et al (2016) The impact of anti-epileptic drugs on growth and bone metabolism. Int J Mol Sci. https://doi.org/10.3390/ijms17081242

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fardet L, Petersen I, Nazareth I (2011) Description of oral glucocorticoid prescriptions in general population. Rev Med Interne 32:594–599

    Article  CAS  Google Scholar 

  12. Fardet L, Petersen I, Nazareth I (2011) Prevalence of long-term oral glucocorticoid prescriptions in the UK over the past 20 years. Rheumatology (Oxf) 50:1982–1990

    Article  Google Scholar 

  13. Garcia P, Everding J, Horn D et al (2015) The biological knife II—Fracture healing and pharmacological interactions. Z Orthop Unfall 153:479–487

    Article  CAS  Google Scholar 

  14. Garcia P, Schwenzer S, Slotta JE et al (2010) Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—Role of a local renin-angiotensin system. Br J Pharmacol 159:1672–1680

    Article  CAS  Google Scholar 

  15. Gaston MS, Simpson AH (2007) Inhibition of fracture healing. J Bone Joint Surg Br 89:1553–1560

    Article  CAS  Google Scholar 

  16. Ghosh M, Majumdar SR (2014) Antihypertensive medications, bone mineral density, and fractures: A review of old cardiac drugs that provides new insights into osteoporosis. Endocrine 46:397–405

    Article  CAS  Google Scholar 

  17. Giannoudis PV, Macdonald DA, Matthews SJ et al (2000) Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J Bone Joint Surg Br 82:655–658

    Article  CAS  Google Scholar 

  18. Gold PW, Pavlatou MG, Michelson D et al (2015) Chronic administration of anticonvulsants but not antidepressants impairs bone strength: Clinical implications. Transl Psychiatry 5:e576

    Article  CAS  Google Scholar 

  19. Graham S, Hammond-Jones D, Gamie Z et al (2008) The effect of beta-blockers on bone metabolism as potential drugs under investigation for osteoporosis and fracture healing. Expert Opin Investig Drugs 17:1281–1299

    Article  CAS  Google Scholar 

  20. Hatano H, Maruo A, Bolander ME et al (2003) Statin stimulates bone morphogenetic protein-2, aggrecan, and type 2 collagen gene expression and proteoglycan synthesis in rat chondrocytes. J Orthop Sci 8:842–848

    Article  CAS  Google Scholar 

  21. Hazan EJ, Hornicek FJ, Tomford W et al (2001) The effect of adjuvant chemotherapy on osteoarticular allografts. Clin Orthop Relat Res 385:176–181

    Article  Google Scholar 

  22. Histing T, Stenger D, Scheuer C et al (2012) Pantoprazole, a proton pump inhibitor, delays fracture healing in mice. Calcif Tissue Int 90:507–514

    Article  CAS  Google Scholar 

  23. Hodge JM, Wang Y, Berk M et al (2013) Selective serotonin reuptake inhibitors inhibit human osteoclast and osteoblast formation and function. Biol Psychiatry 74:32–39

    Article  CAS  Google Scholar 

  24. Hogevold HE, Grogaard B, Reikeras O (1992) Effects of short-term treatment with corticosteroids and indomethacin on bone healing. A mechanical study of osteotomies in rats. Acta Orthop Scand 63:607–611

    CAS  PubMed  Google Scholar 

  25. Holstein JH, Klein M, Garcia P et al (2008) Rapamycin affects early fracture healing in mice. Br J Pharmacol 154:1055–1062

    Article  CAS  Google Scholar 

  26. Ilic K, Obradovic N, Vujasinovic-Stupar N (2013) The relationship among hypertension, antihypertensive medications, and osteoporosis: A narrative review. Calcif Tissue Int 92:217–227

    Article  CAS  Google Scholar 

  27. Jee WS, Park HZ, Roberts WE et al (1970) Corticosteroid and bone. Am J Anat 129:477–479

    Article  CAS  Google Scholar 

  28. Kanda J, Izumo N, Kobayashi Y et al (2017) Effects of the antiepileptic drugs topiramate and lamotrigine on bone metabolism in rats. Biomed Res 38:297–305

    Article  CAS  Google Scholar 

  29. Kim SG, Chung TY, Kim MS et al (2004) The effect of high local concentrations of antibiotics on demineralized bone induction in rats. J Oral Maxillofac Surg 62:708–713

    Article  Google Scholar 

  30. Kruse C, Eiken P, Vestergaard P (2016) Continuous and long-term treatment is more important than dosage for the protective effect of thiazide use on bone metabolism and fracture risk. J Intern Med 279:110–122

    Article  CAS  Google Scholar 

  31. Lee RH, Lyles KW, Colon-Emeric C (2010) A review of the effect of anticonvulsant medications on bone mineral density and fracture risk. Am J Geriatr Pharmacother 8:34–46

    Article  CAS  Google Scholar 

  32. Lim LS, Fink HA, Kuskowski MA et al (2008) Loop diuretic use and increased rates of hip bone loss in older men: The osteoporotic fractures in men study. Arch Intern Med 168:735–740

    Article  Google Scholar 

  33. Liu YZ, Akhter MP, Gao X et al (2018) Glucocorticoid-induced delayed fracture healing and impaired bone biomechanical properties in mice. Clin Interv Aging 13:1465–1474

    Article  Google Scholar 

  34. Moshiri A, Sharifi AM, Oryan A (2016) Role of simvastatin on fracture healing and osteoporosis: A systematic review on in vivo investigations. Clin Exp Pharmacol Physiol 43:659–684

    Article  CAS  Google Scholar 

  35. Mundy G, Garrett R, Harris S et al (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286:1946–1949

    Article  CAS  Google Scholar 

  36. Naik AA, Xie C, Zuscik MJ et al (2009) Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 24:251–264

    Article  CAS  Google Scholar 

  37. Overman RA, Yeh JY, Deal CL (2013) Prevalence of oral glucocorticoid usage in the United States: A general population perspective. Arthritis Care Res (Hoboken) 65:294–298

    Article  Google Scholar 

  38. Patil S, Holt G, Raby N et al (2009) Prospective, double blind, randomized, controlled trial of simvastatin in human fracture healing. J Orthop Res 27:281–285

    Article  CAS  Google Scholar 

  39. Pountos I, Georgouli T, Blokhuis TJ et al (2008) Pharmacological agents and impairment of fracture healing: What is the evidence? Injury 39:384–394

    Article  Google Scholar 

  40. Power ML, Heaney RP, Kalkwarf HJ et al (1999) The role of calcium in health and disease. Am J Obstet Gynecol 181:1560–1569

    Article  CAS  Google Scholar 

  41. Prause M, Seeliger C, Unger M et al (2015) Pantoprazole decreases cell viability and function of human osteoclasts in vitro. Mediators Inflamm. https://doi.org/10.1155/2015/413097

    Article  PubMed  PubMed Central  Google Scholar 

  42. Prause M, Seeliger C, Unger M et al (2014) Pantoprazole increases cell viability and function of primary human osteoblasts in vitro. Injury 45:1156–1164

    Article  Google Scholar 

  43. Rejnmark L, Vestergaard P, Heickendorff L et al (2005) Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J Intern Med 257:176–184

    Article  CAS  Google Scholar 

  44. Rejnmark L, Vestergaard P, Mosekilde L (2006) Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: A nationwide case-control study. J Hypertens 24:581–589

    Article  CAS  Google Scholar 

  45. Rizzoli R, Cooper C, Reginster JY et al (2012) Antidepressant medications and osteoporosis. Bone 51:606–613

    Article  CAS  Google Scholar 

  46. Sarganas G, Knopf H, Grams D et al (2016) Trends in antihypertensive medication use and blood pressure control among adults with hypertension in Germany. Am J Hypertens 29:104–113

    Article  CAS  Google Scholar 

  47. Say F, Iltar S, Alemdaroglu KB et al (2013) The effect of various types low molecular weight heparins on fracture healing. Thromb Res 131:e114–e119

    Article  CAS  Google Scholar 

  48. Simm PJ, Seah S, Gorelik A et al (2017) Impaired bone and muscle development in young people treated with antiepileptic drugs. Epilepsia 58:1931–1938

    Article  CAS  Google Scholar 

  49. Skoglund B, Forslund C, Aspenberg P (2002) Simvastatin improves fracture healing in mice. J Bone Miner Res 17:2004–2008

    Article  CAS  Google Scholar 

  50. Smitham P, Crossfield L, Hughes G et al (2014) Low dose of propranolol does not affect rat osteotomy healing and callus strength. J Orthop Res 32:887–893

    Article  CAS  Google Scholar 

  51. Solomon DH, Mogun H, Garneau K et al (2011) Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res 26:1561–1567

    Article  CAS  Google Scholar 

  52. Sonn KA, Wallace SJ, Yuan FNF et al (2019) The effect of proton pump inhibitors on bone formation in a rat spinal arthrodesis model. Spine. https://doi.org/10.1097/BRS.0000000000002987

    Article  PubMed  Google Scholar 

  53. Street JT, McGrath M, O’Regan K et al (2000) Thromboprophylaxis using a low molecular weight heparin delays fracture repair. Clin Orthop Relat Res 381:278–289

    Article  Google Scholar 

  54. van Staa TP, Geusens P, Pols HA et al (2005) A simple score for estimating the long-term risk of fracture in patients using oral glucocorticoids. QJM 98:191–198

    Article  Google Scholar 

  55. van Staa TP, Leufkens HG, Abenhaim L et al (2000) Use of oral corticosteroids in the United Kingdom. QJM 93:105–111

    Article  Google Scholar 

  56. Verrotti A, Coppola G, Parisi P et al (2010) Bone and calcium metabolism and antiepileptic drugs. Clin Neurol Neurosurg 112:1–10

    Article  Google Scholar 

  57. Waters RV, Gamradt SC, Asnis P et al (2000) Systemic corticosteroids inhibit bone healing in a rabbit ulnar osteotomy model. Acta Orthop Scand 71:316–321

    Article  CAS  Google Scholar 

  58. Weinstein RS (2011) Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med 365:62–70

    Article  CAS  Google Scholar 

  59. Yates JE, Hadi Shah S, Blackwell JC (2011) Clinical inquiries: Do NSAIDs impede fracture healing? J Fam Pract 60:41–42

    PubMed  Google Scholar 

  60. Zhao X, Wang JX, Feng YF et al (2014) Systemic treatment with telmisartan improves femur fracture healing in mice. PLoS ONE 9:e92085

    Article  Google Scholar 

  61. Zura R, Xiong Z, Einhorn T et al (2016) Epidemiology of fracture nonunion in 18 human bones. JAMA Surg 151:e162775

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Maus.

Ethics declarations

Interessenkonflikt

U. Maus, G.S. Maier, D. Lazovic und C. Niedhart geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

E. Hesse, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maus, U., Maier, G.S., Lazovic, D. et al. Beeinflussung der Knochenheilung durch häufig verordnete Medikamente. Unfallchirurg 122, 500–505 (2019). https://doi.org/10.1007/s00113-019-0670-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-019-0670-4

Schlüsselwörter

Keywords

Navigation