Skip to main content
Log in

Eignung der computerassistierten Femurmarknagelung zur Kontrolle von Torsion und Länge

Systematischer Literaturüberblick zu klinischen Studien

Suitability of computer-assisted femoral intramedullary nailing for control of torsion and length

Systematic review of clinical studies

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die computerassistierte Femurmarknagelung zeigte in experimentellen Studien sehr aussichtsvolle Ergebnisse. Ziel der vorliegenden Studie war es, die computerassistierte Femurmarknagelung auf der Basis vorhandener klinischer Studien zu evaluieren und zu bewerten.

Material und Methoden

Es erfolgte die systematische Analyse sämtlicher vorhandener Literatur mit klinischer Anwendung der computerassistierten Femurmarknagelung (PubMed, Cochrane Library und Embase). Publizierte Studien bis zum Mai 2017 wurden eingeschlossen.

Ergebnisse

Es konnten insgesamt 3 klinische Studien analysiert werden. Unter Verwendung der computerassistierten Femurmarknagelung war in allen Studien ein relevanter Anstieg der Operations- und intraoperativen Strahlungszeit zu verzeichnen. Das klinische Ergebnis in Bezug auf Femurtorsion und -länge war tendenziell besser zugunsten der computerassistierten Versorgung, jedoch waren die Ergebnisse sehr heterogen.

Schlussfolgerung

Die vorliegende Analyse konnte zeigen, dass der erfolgreiche klinische Einsatz der computerassistierten Femurmarknagelung möglich ist. Jedoch kommt es zu einer relevanten Verlängerung der Operationszeit und zu einer höheren Strahlenbelastung. In Bezug auf das postoperative Ergebnis hinsichtlich Femurtorsion und -länge fanden sich sehr heterogene Ergebnisse. Weitere vergleichende Studien werden in Zukunft benötigt.

Abstract

Background

Despite promising results in experimental studies, computer-assisted femoral intramedullary nailing has not become established in the clinical practice for most orthopedic surgeons. The purpose of this study was to evaluate the advantages and disadvantages of computer-assisted reduction and nailing of femoral fractures as reported in clinical studies.

Material and methods

A systematic analysis of the available literature on the clinical application of computer-assisted femoral intramedullary nailing (Pubmed, Cochrane library and Embase) was carried out. Studies published up to May 2017 were included.

Results

A total of three articles were included in this meta-analysis. All studies showed a relevant increase in total operating time and radiation exposure time with the use of computer-assisted femoral intramedullary nailing. The clinical results for computer-assisted nailing with respect to femoral torsion and length tended to be slightly better but the results were very heterogeneous.

Conclusion

Our analysis could show that computer-assisted femoral intramedullary nailing is clinically feasible but the operative and fluoroscopy time needed are high and the reported postoperative results for femoral length and torsion were very heterogeneous. Further comparative studies are needed in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Braten M, Terjesen T, Rossvoll I (1993) Torsional deformity after intramedullary nailing of femoral shaft fractures. Measurement of anteversion angles in 110 patients. J Bone Joint Surg Br 75:799–803

    Article  CAS  PubMed  Google Scholar 

  2. Bucholz RW, Jones A (1991) Fractures of the shaft of the femur. J Bone Joint Surg Am 73:1561–1566

    Article  CAS  PubMed  Google Scholar 

  3. Claassen L, Hawi N, Ettinger M et al (2013) Computer-assisted navigation of a complex femoral shaft fracture: instruction in three steps – a technical note. Technol Health Care 21:631–639

    CAS  PubMed  Google Scholar 

  4. Frank J, Gritzbach B, Winter C et al (2010) Computer-assisted femur fracture reduction. Eur J Trauma Emerg Surg 36:151–156

    Article  PubMed  Google Scholar 

  5. Hankemeier S, Hufner T, Wang G et al (2006) Navigated open-wedge high tibial osteotomy: advantages and disadvantages compared to the conventional technique in a cadaver study. Knee Surg Sports Traumatol Arthrosc 14:917–921

    Article  CAS  PubMed  Google Scholar 

  6. Hankemeier S, Hufner T, Wang G et al (2005) Navigated intraoperative analysis of lower limb alignment. Arch Orthop Trauma Surg 125:531–535

    Article  PubMed  Google Scholar 

  7. Hardman J, Elvey M, Shah N et al (2015) Defining reference levels for intra-operative radiation exposure in orthopaedic trauma: a retrospective multicentre study. Injury 46:2457–2460

    Article  CAS  PubMed  Google Scholar 

  8. Hawi N, Liodakis E, O’loughlin PF et al (2012) Progress towards intra-operative measurement of femoral antetorsion. Technol Health Care 20:57–63

    PubMed  Google Scholar 

  9. Hawi N, Liodakis E, Suero EM et al (2014) Radiological outcome and intraoperative evaluation of a computer-navigation system for femoral nailing: a retrospective cohort study. Injury 45:1632–1636

    Article  PubMed  Google Scholar 

  10. Herscovici D Jr., Scaduto JM (2014) Assessing leg length after fixation of comminuted femur fractures. Clin Orthop Relat Res 472:2745–2750

    Article  PubMed  Google Scholar 

  11. Hofstetter R, Slomczykowski M, Krettek C et al (2000) Computer-assisted fluoroscopy-based reduction of femoral fractures and antetorsion correction. Comput Aided Surg 5:311–325

    Article  CAS  PubMed  Google Scholar 

  12. Jaarsma RL, Pakvis DF, Verdonschot N et al (2004) Rotational malalignment after intramedullary nailing of femoral fractures. J Orthop Trauma 18:403–409

    Article  CAS  PubMed  Google Scholar 

  13. Keast-Butler O, Lutz MJ, Angelini M et al (2012) Computer navigation in the reduction and fixation of femoral shaft fractures: a randomized control study. Injury 43:749–756

    Article  PubMed  Google Scholar 

  14. Kendoff D, Citak M, Gardner MJ et al (2007) Navigated femoral nailing using noninvasive registration of the contralateral intact femur to restore anteversion. Technique and clinical use. J Orthop Trauma 21:725–730

    Article  PubMed  Google Scholar 

  15. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62:e1–e34

    Article  PubMed  Google Scholar 

  16. Liodakis E, Kenawey M, Liodaki E et al (2010) The axis-board: an alternative to the cable technique for intraoperative assessment of lower limb alignment. Technol Health Care 18:165–171

    CAS  PubMed  Google Scholar 

  17. Liodakis E, Kenawey M, Petri M et al (2011) Factors influencing neck anteversion during femoral nailing: a retrospective analysis of 220 torsion-difference CTs. Injury 42:1342–1345

    Article  PubMed  Google Scholar 

  18. Liodakis E, Macke C, Kenawey M et al (2012) Mini-navigator: a new system for navigated deformity corrections. Int J Med Robot 8:319–326

    Article  PubMed  Google Scholar 

  19. Logters T, Windolf J, Flohe S (2009) Fractures of the shaft of the femur. Unfallchirurg 112:635–650 (quiz 651)

    Article  CAS  PubMed  Google Scholar 

  20. Madan S, Blakeway C (2002) Radiation exposure to surgeon and patient in intramedullary nailing of the lower limb. Injury 33:723–727

    Article  PubMed  Google Scholar 

  21. Mavrogenis AF, Savvidou OD, Mimidis G et al (2013) Computer-assisted navigation in orthopedic surgery. Orthopedics 36:631–642

    Article  PubMed  Google Scholar 

  22. Nolte LP, Beutler T (2004) Basic principles of CAOS. Injury 35(Suppl 1):A6–A16

    Article  Google Scholar 

  23. Patel NM, Yoon RS, Koerner JD et al (2014) Timing of diaphyseal femur fracture nailing: is the difference night and day? Injury 45:546–549

    Article  PubMed  Google Scholar 

  24. Pearle AD, Solomon DJ, Wanich T et al (2007) Reliability of navigated knee stability examination: a cadaveric evaluation. Am J Sports Med 35:1315–1320

    Article  PubMed  Google Scholar 

  25. Ricci WM, Bellabarba C, Lewis R et al (2001) Angular malalignment after intramedullary nailing of femoral shaft fractures. J Orthop Trauma 15:90–95

    Article  CAS  PubMed  Google Scholar 

  26. Ricci WM, Gallagher B, Brandt A et al (2009) Is after-hours orthopaedic surgery associated with adverse outcomes? A prospective comparative study. J Bone Joint Surg Am 91:2067–2072

    Article  PubMed  Google Scholar 

  27. Ricci WM, Gallagher B, Haidukewych GJ (2009) Intramedullary nailing of femoral shaft fractures: current concepts. J Am Acad Orthop Surg 17:296–305

    Article  PubMed  Google Scholar 

  28. Rudloff MI, Smith WR (2009) Intramedullary nailing of the femur: current concepts concerning reaming. J Orthop Trauma 23:S12–17

    Article  PubMed  Google Scholar 

  29. Salem KH, Maier D, Keppler P et al (2006) Limb malalignment and functional outcome after antegrade versus retrograde intramedullary nailing in distal femoral fractures. J Trauma 61:375–381

    Article  PubMed  Google Scholar 

  30. Sennerich T, Sutter P, Ritter G et al (1992) Computerized tomography follow-up of the ante-torsion angle after femoral shaft fractures in the adult. Unfallchirurg 95:301–305

    CAS  PubMed  Google Scholar 

  31. Strecker W, Suger G, Kinzl L (1996) Local complications of intramedullary nailing. Orthopäde 25:274–291

    CAS  PubMed  Google Scholar 

  32. Sudmann E (1973) Rotational displacement after percutaneous, intramedullary osteosynthesis of femur shaft fractures. Acta Orthop Scand 44:242–248

    Article  CAS  PubMed  Google Scholar 

  33. Tornetta P 3rd, Ritz G, Kantor A (1995) Femoral torsion after interlocked nailing of unstable femoral fractures. J Trauma 38:213–219

    Article  PubMed  Google Scholar 

  34. Vaidya R, Anderson B, Elbanna A et al (2012) CT scanogram for limb length discrepancy in comminuted femoral shaft fractures following IM nailing. Injury 43:1176–1181

    Article  PubMed  Google Scholar 

  35. Vetter SY, Keil C, Von Recum J et al (2014) Postoperative malrotation after closed reduction and intramedullary nailing of the femur: a retrospective 5‑year analysis. Z Orthop Unfall 152:498–503

    Article  CAS  PubMed  Google Scholar 

  36. Weil YA, Gardner MJ, Helfet DL et al (2007) Computer navigation allows for accurate reduction of femoral fractures. Clin Orthop Relat Res 460:185–191

    PubMed  Google Scholar 

  37. Weil YA, Greenberg A, Khoury A et al (2014) Computerized navigation for length and rotation control in femoral fractures: a preliminary clinical study. J Orthop Trauma 28:e27–e33

    Article  PubMed  Google Scholar 

  38. Weil YA, Liebergall M, Mosheiff R et al (2007) Long bone fracture reduction using a fluoroscopy-based navigation system: a feasibility and accuracy study. Comput Aided Surg 12:295–302

    Article  PubMed  Google Scholar 

  39. Wilharm A, Gras F, Rausch S et al (2011) Navigation in femoral-shaft fractures – from lab tests to clinical routine. Injury 42:1346–1352

    Article  CAS  PubMed  Google Scholar 

  40. Winquist RA, Hansen ST Jr., Clawson DK (1984) Closed intramedullary nailing of femoral fractures. A report of five hundred and twenty cases. J Bone Joint Surg Am 66:529–539

    Article  CAS  PubMed  Google Scholar 

  41. Wiss DA, Fleming CH, Matta JM et al (1986) Comminuted and rotationally unstable fractures of the femur treated with an interlocking nail. Clin Orthop Relat Res 212:35–47

    Google Scholar 

  42. Wolf H, Schauwecker F, Tittel K (1984) Malrotation following intramedullary nailing of the femur. Unfallchirurgie 10:133–136

    Article  CAS  PubMed  Google Scholar 

  43. Wright JG, Swiontkowski MF, Heckman JD (2003) Introducing levels of evidence to the journal. J Bone Joint Surg Am 85-A:1–3

    Article  PubMed  Google Scholar 

  44. Yang KH, Han DY, Jahng JS et al (1998) Prevention of malrotation deformity in femoral shaft fracture. J Orthop Trauma 12:558–562

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanouil Liodakis.

Ethics declarations

Interessenkonflikt

E. Liodakis, C. Krettek und N. Hawi geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

C. Krettek, Hannover

E. Liodakis, Hannover

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liodakis, E., Krettek, C. & Hawi, N. Eignung der computerassistierten Femurmarknagelung zur Kontrolle von Torsion und Länge. Unfallchirurg 121, 182–190 (2018). https://doi.org/10.1007/s00113-017-0441-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-017-0441-z

Schlüsselwörter

Keywords

Navigation