Skip to main content

Advertisement

Log in

Stahl oder Titan bei der Osteosynthese

Eine mechanobiologische Perspektive

Steel or titanium for osteosynthesis

A mechanobiological perspective

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Wird ein Implantat für die Stabilisierung einer Fraktur eingesetzt, entsteht ein mechanisches Konstrukt, das unmittelbaren Einfluss auf die Biologie der Knochenheilung nimmt. Dabei stellt die Stabilisierung von Frakturen hohe mechanische Anforderungen an Implantate, weshalb momentan fast ausschließlich Stahl oder Titan als Material verwendet wird.

Ziel der Arbeit

Der mögliche Bereich der erreichbaren mechanobiologischen Stimulation als Mechanotherapie in Abhängigkeit von der Plattensteifigkeit durch die Wahl des Plattenmaterials sowie die physikalisch-mechanischen Eigenschaften der Materialoptionen sollen hier erörtert werden.

Material und Methoden

Ein Überblick über die Materialeigenschaften von Stahl und Titan wird gegeben. Am Beispiel dynamisch fixierter Frakturen langer Röhrenknochen wird die Plattenschwingstrecke (PSS; frakturnahe Schraubenkonfiguration) für verschiedene Finite-Elemente-Modelle der Plattenosteosynthese (Stahl/Titan) variiert. Die interfragmentäre Bewegung (IFB) als Maß der mechanobiologischen Stimulation wird ausgewertet.

Ergebnisse

Die Stimulation in Form der IFB variiert über den Frakturspalt und auch in Abhängigkeit vom Osteosynthesematerial und der -konfiguration. Der Einfluss des Materials erscheint dabei deutlich kleiner als der Einfluss der PSS, aber beides verliert seinen Einfluss weitgehend für eine überbrückte Fraktursituation (Kontakt). Mit einer flexibleren Titanplatte und großer PSS kann eine größere mechanobiologische Stimulation erzeugt werden.

Diskussion

Eine Voraussetzung für die sekundäre Frakturheilung ist eine angemessene mechanobiologische Umgebung, welche durch das Osteosynthesematerial und die -konfiguration gesteuert werden kann, aber auch durch die Art der Fraktur und Belastung beeinflusst wird.

Abstract

Background

An implant used for stabilizing a fracture creates a mechanical construct, which directly determines the biology of bone healing. The stabilization of fractures places high mechanical demands on implants and therefore steel and titanium are currently almost exclusively used as the materials of choice.

Objectives

The possible range of attainable mechanobiological stimulation for mechanotherapy as a function of plate stiffness depending on the selection of the plate material and the physical and mechanical properties of the material options are discussed.

Material and methods

An overview of the material properties of steel and titanium is given. For dynamically fixed long bone fractures as examples, various finite element models of plate osteosynthesis (steel/titanium) are created and the plate working length (PWL, screw configuration close to fracture) is varied. The interfragmentary movement (IFM) as a measure of mechanobiological stimulation is evaluated.

Results

Stimulation in the form of IFM varies across the fracture and also as a function of the osteosynthesis material and the configuration. The influence of the material appears to be notably smaller than the influence of PWL but both lose their influence largely over a bridged fracture situation (contact). With a flexible titanium plate and large PSS, a greater mechanobiological stimulation is produced.

Conclusion

An essential prerequisite for the secondary fracture healing is an appropriate mechanobiological environment, which can be controlled by the osteosynthesis material and the configuration and is also affected by the type of fracture and load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Ahmad M, Nanda R, Bajwa A, Candal-Couto J, Green S, Hui A (2007) Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury 38:358–364

    Article  CAS  PubMed  Google Scholar 

  2. Al-Mobarak NA, Al-Swayih AA, Al-Rashoud FA (2011) Corrosion behavior of ti-6Al-7Nb alloy in biological solution for dentistry applications. Int J Electrochem Sci 6:2031–2042

    CAS  Google Scholar 

  3. Augat P, Burger J, Schorlemmer S, Henke T, Peraus M, Claes L (2003) Shear movement at the fracture site delays healing in a diaphyseal fracture model. J Orthopaed Res 21:1011–1017

    Article  Google Scholar 

  4. Bannon BP, Mild EE (1983) Titanium alloys for biomaterial application: An overview. In: Titanium alloys in surgical implants. ASTM STP 796, HA Luckey and Fred Kuebli, Jr (Hrsg.), American Society for Testing and Materials, S 7–15

  5. Blunt JW, Hudack SS, Murray CR (1952) Metals and plastics in orthopedic surgery and general surgery. Clinical Congress. American College of Surgeons, New York

    Google Scholar 

  6. Brown S, Merritt K (1982) The Effect of Serum Proteins on Corrosion Rates In-Vitro. In: Clinical Applications Of Biomaterials. John Wiley and Sons, Hoboken, S 195–201

    Google Scholar 

  7. Button G, Wolinsky P, Hak D (2004) Failure of less invasive stabilization system plates in the distal femur: a report of four cases. J Orthop Trauma 18:565–570

    Article  PubMed  Google Scholar 

  8. Döbele S, Gardner M, Schröter S, Höntzsch D, Stöckle U, Freude T (2014) DLS 5.0-the biomechanical effects of dynamic locking screws. PLOS ONE 9:e91933

    Article  PubMed  PubMed Central  Google Scholar 

  9. Duda GN, Mandruzzato F, Heller M, Kassi JP, Khodadadyan C, Haas NP (2002) Mechanical conditions in the internal stabilization of proximal tibial defects. Clin Biomech (Bristol, Avon) 17:64–72

    Article  Google Scholar 

  10. Duda GN, Sporrer S, Sollmann M, Hoffmann JE, Kassi J‑P, Khodadadyan C, Raschke M (2003) Interfragmentary movements in the early phase of healing in distraction and correction osteotomies stabilized with ring fixators. Langenbecks Arch Surg 387:433–440

    PubMed  Google Scholar 

  11. Epari DR, Kassi JP, Schell H, Duda GN (2007) Timely fracture-healing requires optimization of axial fixation stability. J Bone Joint Surg Am 89:1575–1585

    PubMed  Google Scholar 

  12. Fraker AC, Ruff AW, Sung P, van Orden AC, Speck KM (1983) Surface preparation and corrosion behavior of titanium alloys for surgical implants. In: Titanium alloys in surgical implants. ASTM STP 796, HA Luckey and Fred Kuebli, Jr (Hrsg.), American Society for Testing and Materials, S 206–219

  13. Freude T, Schröter S, Gonser CE, Stöckle U, Acklin YP, Höntzsch D, Döbele S (2014) Controlled dynamic stability as the next step in „biologic plate osteosynthesis“ – a pilot prospective observational cohort study in 34 patients with distal tibia fractures. Patient Saf Surg 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goodship AE, Kenwright J (1985) The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 67:650–655

    Article  CAS  PubMed  Google Scholar 

  15. Hak DJ, Toker S, Chengla YI, Toreson J (2010) The influence of fracture fixation biomechanics on fracture healing. Orthopedics 33:752–755

    Article  PubMed  Google Scholar 

  16. Heyland M, Duda GN, Haas NP, Trepczynski A, Döbele S, Höntzsch D, Schaser K‑D, Märdian S (2015) Semi-rigid screws provide an auxiliary option to plate working length to control interfragmentary movement in locking plate fixation at the distal femur. Injury 46:S24–S32

    Article  PubMed  Google Scholar 

  17. Hoffmeier KL, Hofmann GO, Mückley T (2011) Choosing a proper working length can improve the lifespan of locked plates: A biomechanical study. Clin Biomech (Bristol, Avon) 26:405–409

    Article  Google Scholar 

  18. Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M (2010) Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma 24:156–162

    Article  PubMed  Google Scholar 

  19. MacLeod AR, Simpson H, Pankaj P (2015) In vitro testing of locking plate fracture fixation wrongly predicts the performance of different implant materials. European Society of Biomechanics, Prague

    Google Scholar 

  20. Märdian S, Schaser K‑D, Duda GN, Heyland M (2015) Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech (Bristol, Avon) 30:391–396

    Article  Google Scholar 

  21. Mehboob H, Chang S‑H (2014) Application of composites to orthopedic prostheses for effective bone healing: A review. Compos Struct 118:328–341

    Article  Google Scholar 

  22. Miramini S, Zhang L, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G (2015) Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Comput Methods Biomech Biomed Engin 18:900–913

    Article  PubMed  Google Scholar 

  23. Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK (Hrsg) Current concepts of internal fixation of fractures. Springer, Berlin, S 63–77

    Google Scholar 

  24. Peterson LT (1947) Fixation of bones by plates and screws. J Bone Joint Surg Am 29:335–347

    CAS  PubMed  Google Scholar 

  25. Pohler O, Straumann F (1975) Characteristics of the stainless steel AO/ASIF implants. Institute Straumann AG, Waldenburg

    Google Scholar 

  26. Reina-Romo E, Giráldez-Sánchez M, Mora-Macías J, Cano-Luis P, Domínguez J (2014) Biomechanical design of less invasive stabilization system femoral plates: computational evaluation of the fracture environment. Proc Inst Mech Eng H 228:1043–1052

    Article  PubMed  Google Scholar 

  27. Rüedi TP (1975) Titanium and steel in the bone surgery. Hefte Unfallheilkd 123:1–66

    Google Scholar 

  28. Schmidt U, Penzkofer R, Bachmaier S, Augat P (2013) Implant material and design alter construct stiffness in distal femur locking plate fixation: A pilot study. Clin Orthop Relat Res 471:2808–2814

    Article  PubMed  PubMed Central  Google Scholar 

  29. Speirs AD, Heller MO, Duda GN, Taylor WR (2007) Physiologically based boundary conditions in finite element modelling. J Biomech 40:2318–2323

    Article  PubMed  Google Scholar 

  30. Steinemann SG, Mäusli PA, Szmukler-Moncler S, Semlitsch M, Pohler O, Hintermann HE, Perren SM (1992) Beta-titanium alloy for surgical implants. In: Seventh world conference on titanium. San Diego, USA

    Google Scholar 

  31. Stoffel K, Dieter U, Stachowiak G, Gächter A, Kuster MS (2003) Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled? Injury 34:B11–B19

    Article  PubMed  Google Scholar 

  32. Tan S, Balogh ZJ (2009) Indications and limitations of locked plating. Injury 40:683–691

    Article  PubMed  Google Scholar 

  33. Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R (2012) Finite element analysis of osteosynthesis screw fixation in the bone stock: an appropriate method for automatic screw modelling. PLOS ONE 7:e33776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wullschleger ME (2010) Effect of surgical approach on bone vascularisation, fracture and soft tissue healing: comparison of less invasive to open approach. In: Faculty of built environment and engineering. Queensland University of Technology, Brisbane (http://eprints.qut.edu.au/38523/)

    Google Scholar 

  35. Zimmer Inc. USA (1984) Physical and mechanical properties of orthopaedic alloys. Zimmer Inc., Warsaw

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Duda.

Ethics declarations

Interessenkonflikt

M. Heyland, G.N. Duda, S. Märdian, M. Schütz und M. Windolf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

D.G. Höntzsch, Tübingen

W. Mutschler, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heyland, M., Duda, G.N., Märdian, S. et al. Stahl oder Titan bei der Osteosynthese. Unfallchirurg 120, 103–109 (2017). https://doi.org/10.1007/s00113-016-0289-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-016-0289-7

Schlüsselwörter

Keywords

Navigation