Skip to main content
Log in

Medikamente und Knochenstoffwechsel

Klinische Bedeutung für die Frakturbehandlung

Medication and bone metabolism

Clinical importance for fracture treatment

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Eine Verbesserung und Beschleunigung der Frakturheilung ist Teil der ärztlichen Bemühungen, seitdem Frakturen behandelt werden. Dabei gilt es nicht nur, die Grundprinzipien der Frakturheilung, wie Reposition, Retention, Weichteildeckung und Infektvermeidung zu beachten, sondern auch, negative Einflüsse für die Frakturheilung möglichst auszuschalten und positive Faktoren zu fördern. Nikotin, Alkohol, Diabetes und Mangelernährung können die Frakturheilung negativ beeinflussen und sollten dementsprechend therapeutisch gewürdigt werden. Schwieriger ist es jedoch, medikamentöse Therapiestrategien zu entwickeln, die eine Verbesserung und Beschleunigung der Frakturheilung zum Ziel haben.

Ziel der Arbeit

Die vorliegende Arbeit soll einen Überblick der pharmakologischen Einflussfaktoren auf die Frakturheilung geben. Darüber hinaus sollen im klinischen Alltag häufig angewendete Substanzen in Bezug auf ihre Wirkung bei Frakturheilungsprozessen evaluiert werden.

Material und Methoden

Es wurde eine intensive Literaturrecherche (PubMed) anhand themenbezogener Suchbegriffe durchgeführt. Bei der Auswahl der Studien und wissenschaftlichen Veröffentlichungen wurde der Schwerpunkt auf Ergebnisse aus klinischen Studien gelegt, um einem praxisnahen Bezug gerecht zu werden.

Ergebnisse

Präklinische Studien haben in diesem Zusammenhang mehrere Substanzen identifiziert, die zur Optimierung der Frakturheilung führen. Jedoch existiert nur eine sehr begrenzte Zahl klinischer Studien, die besagte positive Wirkung ebenso belegen. Die meisten dieser Studien betreffen Medikamente zur Therapie der Osteoporose, da hier Frakturen häufig sind und ein positiver wie negativer Einfluss der besagten Medikamente von besonderem Interesse ist. So kann für den Bereich der Osteoporosemedikamente konstatiert werden, dass ein gewisser positiver Effekt von 1–34 Parathormon (PTH) auf die Frakturheilung in klinischen Studien gezeigt wurde. Für die übrigen Osteoporosemedikamente wurde beschrieben, dass im klinischen Setting kein negativer Einfluss auf die Frakturheilung besteht. Es gibt aber Hinweise, dass z. B. unter oraler Bisphosphonattherapie ein positiver Effekt im Hinblick auf eine bessere Implantatfixierung möglich ist.

Diskussion

Das Ziel, die Frakturheilung medikamentös systemisch zu verbessern, liegt noch in weiter Ferne, da weder die Daten bereits zugelassener Therapeutika oder in Entwicklung befindlicher Medikamente einen routinemäßigen Einsatz zum jetzigen Zeitpunkt rechtfertigen. Die bis dato gewonnenen Erkenntnisse sollten jedoch dazu ermutigen, in zukünftigen Frakturheilungsstudien das Potenzial bekannter Medikamente, aber auch neuer Therapieoptionen im Sinne einer verbesserten Knochenbruchheilung zum Wohle der Patienten vollständig auszuschöpfen.

Abstract

Introduction

The improvement and acceleration of fracture healing has been a component of medical practice since fractures have been treated. The aim is not only to fulfill the basic principles of fracture healing, such as reduction, retention, soft tissue coverage and infection prevention but also to reduce negative influences on fracture healing and promote positive factors. Nicotine, alcohol, diabetes and malnutrition can negatively affect fracture healing and should be appropriately controlled during fracture treatment; however, it is far more difficult to develop medicinal treatment strategies that lead to improvement and acceleration of fracture healing.

Aim

This article provides an overview of pharmacological factors influencing fracture healing. In addition, substances frequently used in clinical practice will be evaluated in terms of the effects on fracture healing processes.

Material and methods

An extensive literature search was conducted in PubMed based on thematic keywords. The selection of studies and scientific publications focused mainly on results from clinical trials in order to provide practically relevant information.

Results

In this context, preclinical studies have identified several drugs that lead to the acceleration of fracture healing; however, only a very limited number of clinical trials have confirmed this positive effect. Most of these studies dealt with drugs developed for the treatment of osteoporosis, as osteoporotic fractures are common and a positive or negative influence of such drugs are of particular interest in this field. In the field of osteoporosis medication a certain degree of positive effect of parathyroid hormone 1–34 (PTH) on fracture healing has been shown in clinical trials. For other osteoporosis medications no negative influence on fracture healing in clinical settings has been reported; however, there seems to be a positive effect in terms of better implant fixation for patients receiving oral bisphosphonate therapy.

Discussion

Systemic medication to improve fracture healing will not be part of the clinical routine in the foreseeable future as the available data for already approved drugs and drugs under development do not currently justify routine administration. However, the currently known data should encourage the potential of known medications to be completely exhausted in fracture healing studies as well as novel therapy options in the sense of positive effects on fracture healing in order to improve patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Butcher JL, MacKenzie EJ, Cushing B et al (1996) Long-term outcomes after low extremity trauma. J Trauma 41:4–9

    Article  CAS  PubMed  Google Scholar 

  2. MacKenzie EJ, Bosse MJ, Pollak AN et al (2005) Long-term persistence of disability following severe lower-limb trauma. Results of a seven-year follow-up. J Bone Joint Surg Am 87:1801–1809

    Article  PubMed  Google Scholar 

  3. Svedbom A, Hernlund E, Ivergard M et al (2013) Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 8:137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Goldhahn J, Féron JM, Kanis J, Papapoulos S, Reginster JY, Rizzoli R, Dere W, Mitlak B, Tsouderos Y, Boonen S (2012) Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int 90(5):343–353

    Article  CAS  PubMed  Google Scholar 

  5. Goldhahn J, Little D, Mitchell P, Fazzalari NL, Reid IR, Aspenberg P, Marsh D (2010) Evidence for anti-osteoporosis therapy in acute fracture situations – recommendations of a multidisciplinary workshop of the International Society for Fracture Repair. Bone 46(2):267–271

    Article  CAS  PubMed  Google Scholar 

  6. Ferguson C, Alpern E, Miclau T, Helms JA (1999) Does adult fracture repair recapitulate embryonic skeletal formation? Mech Dev 87:57–66

    Article  CAS  PubMed  Google Scholar 

  7. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21

    Article  PubMed  Google Scholar 

  8. Bishop JA, Palanca AA, Bellino MJ, Lowenberg DW (2012) Assessment of compromised fracture healing. J Am Acad Orthop Surg 20:273–282

    Article  PubMed  Google Scholar 

  9. Steinhausen E, Glombitza M, Böhm HJ, Hax PM, Rixen D (2013) Pseudarthrosen. Von der Diagnose bis zur Ausheilung. Unfallchirurg 116(7):633–647

    Article  CAS  PubMed  Google Scholar 

  10. Cao Y, Mori S, Mashiba T et al (2002) Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 17:2237–2246

    Article  CAS  PubMed  Google Scholar 

  11. Amanat N, McDonald M, Godfrey C et al (2007) Optimal timing of a single dose of zoledronic acid to increase strength in rat fracture repair. J Bone Miner Res 22:867–876

    Article  CAS  PubMed  Google Scholar 

  12. Odvina CV, Zerwekh JE, Rao DS et al (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 90:1294–1301

    Article  CAS  PubMed  Google Scholar 

  13. Rizzoli R, Akesson K, Bouxsein M et al (2011) Subtrochanteric fractures after long-term treatment with bisphosphonates: a European Society on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis, and International Osteoporosis Foundation Working Group Report. Osteoporos Int 22:373–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    Article  CAS  PubMed  Google Scholar 

  15. Solomon DH, Hochberg MC, Mogun H et al (2009) The relation between bisphosphonate use and non-union of fractures of the humerus in older adults. Osteoporos Int 20:895–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. van der Poest CE, van EM, Ader H et al (2002) Alendronate inthe prevention of bone loss after a fracture of the lower leg. J Bone Miner Res 17:2247–2255

  17. van der Poest CE, Patka P, Vandormael K et al (2000) The effect of alendronate on bone mass after distal forearm fracture. J Bone Miner Res 15:586–593

    Google Scholar 

  18. Moroni A, Faldini C, Hoang-Kim A et al (2007) Alendronate improves screw fixation in osteoporotic bone. J Bone Joint Surg Am 89:96–101

    Article  PubMed  Google Scholar 

  19. Hilding M, Aspenberg P (2007) Local peroperative treatment with a bisphosphonate improves the fixation of total knee prostheses: a randomized, double-blind radiostereometric study of 50 patients. Acta Orthop 78:795–799

    Article  PubMed  Google Scholar 

  20. Hilding M, Aspenberg P (2006) Postoperative clodronate decreases prosthetic migration: 4-year follow-up of a randomized radiostereometric study of 50 total knee patients. Acta Orthop 77:912–916

    Article  PubMed  Google Scholar 

  21. Gerstenfeld LC, Sacks DJ, Pelis M et al (2009) Comparison of effects of the bisphosphonate alendronate vs. the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 24:196–208

    Article  CAS  PubMed  Google Scholar 

  22. Li YF, Luo E, Feng G et al (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int 21:1889–1897

    Article  CAS  PubMed  Google Scholar 

  23. Habermann B, Kafchitsas K, Olender G et al (2010) Strontium ranelate enhances callus strength more than PTH 1–34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89

    Article  CAS  PubMed  Google Scholar 

  24. Ozturan KE, Demir B, Yucel I et al (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res 29:138–142

    Article  CAS  PubMed  Google Scholar 

  25. Spiro AS, Khadem S, Jeschke A, Marshall RP, Pogoda P, Ignatius A, Amling M, Beil FT (2013) The SERM raloxifene improves diaphyseal fracture healing in mice. J Bone Miner Metab 31(6):629–636

    Article  CAS  PubMed  Google Scholar 

  26. Stuermer EK, Sehmisch S, Rack T et al (2010) Estrogen and raloxifene improve metaphyseal fracture healing in the early phase of osteoporosis. A new fracture-healing model at the tibia in rat. Langenbecks Arch Surg 395:163–172

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hock JM, Gera I (1992) Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res 7(1):65–72

    Article  CAS  PubMed  Google Scholar 

  28. Nakajima A, Shimoji N, Shiomi K, Shimizu S, Moriya H, Einhorn TA, Yamazaki M (2002) Mechanisms for the enhancement of fracture healing in rats treated with intermittent low-dose human parathyroid hormone (1–34). J Bone Miner Res 17(11):2038–2047

    Article  CAS  PubMed  Google Scholar 

  29. Holzer G, Majeska RJ, Lundy MW, Hartke JR, Einhorn TA (1999) Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res 366:258–263

    Article  PubMed  Google Scholar 

  30. Ellegaard M, Jorgensen NR, Schwarz P (2010) Parathyroid hormone and bone healing. Calcif Tissue Int 87(1):1–13

    Article  CAS  PubMed  Google Scholar 

  31. Knecht TP (2004) Teriparatide and fracture healing in cortical bone. Endocr Pract 10:293

    PubMed  Google Scholar 

  32. Yu CT, Wu JK, Chang CC et al (2008) Early callus formation in human hip fracture treated with internal fixation and teriparatide. J Rheumatol 35:2082–2083

    PubMed  Google Scholar 

  33. Rubery PT, Bukata SV (2010) Teriparatide may accelerate healing in delayed unions of type III odontoid fractures: a report of 3 cases. J Spinal Disord Tech 23:151–155

    Article  PubMed  Google Scholar 

  34. Aspenberg P, Genant HK, Johansson T, Nino AJ, See K, Krohn K, García-Hernández PA, Recknor CP, Einhorn TA, Dalsky GP et al (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414

    Article  CAS  PubMed  Google Scholar 

  35. Gardner MJ, van der Meulen MC, Carson J et al (2007) Role of parathyroid hormone in the mechanosensitivity of fracture healing. J Orthop Res 25:1474–1480

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Miyagi M, Kamoda H, Suzuki M, Kubota G, Sakuma Y, Oikawa Y, Inage K, Sainoh T, Takaso M, Toyone T, Takahashi K (2013) Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila Pa 1976) 38(8):E487–E492

    Article  Google Scholar 

  37. Ohtori S, Orita S, Yamauchi K, Eguchi Y, Ochiai N, Kuniyoshi K, Aoki Y, Nakamura J, Miyagi M, Suzuki M, Kubota G, Inage K, Sainoh T, Sato J, Shiga Y, Abe K, Fujimoto K, Kanamoto H, Inoue G, Takahashi K (2015) More than 6 months of teriparatide treatment was more effective for bone union than shorter treatment following lumbar posterolateral fusion surgery. Asian Spine J 9(4):573–580

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bashutski JD, Eber RM, Kinney JS et al (2010) Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 363:2396–2405

    Article  CAS  PubMed  Google Scholar 

  39. Peichl P, Holzer LA, Maier R, Holzer G (2011) Parathyroid hormone 1–84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 93:1583–1587

    Article  PubMed  Google Scholar 

  40. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  CAS  PubMed  Google Scholar 

  41. Ominsky MS, Li C, Li X et al (2011) Inhibition of sclerostin by monoclonal antibody enhances bone healing and improves bone density and strength of nonfractured bones. J Bone Miner Res 26(5):1012–1021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Barvencik.

Ethics declarations

Interessenkonflikt

F. Barvencik weist auf folgende Beziehungen hin: Er ist als Referent für die Firmen Alexion, Amgen, Lilly und MSD tätig.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Amling, Hamburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barvencik, F. Medikamente und Knochenstoffwechsel. Unfallchirurg 118, 1017–1024 (2015). https://doi.org/10.1007/s00113-015-0109-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-015-0109-5

Schlüsselwörter

Keywords

Navigation