Skip to main content
Log in

Versorgung pertrochantärer Femurfrakturen

Biomechanische Überlegungen

Treatment of peritrochanteric fractures

Biomechanical considerations

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Bei der pertrochantären Femurfraktur sind biomechanische Überlegungen von großer Bedeutung. Häufig bestehen begleitend geriatrische Erkrankungen und Osteoporose, die hohe Anforderungen an die Primärstabilität der operativen Versorgung stellen. Bei der instabilen Fraktur (AO/ASIF 31-A2 und -A3) können schon Alltagsbelastungen die kritischen Grenzen überschreiten und das Versagen der Frakturversorgung einleiten. Sowohl intra- als auch extramedulläre Implantate kommen mit Erfolg auch bei instabiler Fraktur zum Einsatz. Verschiedene Variationen in der Verankerung der Schenkelhalsträger und im Design der Implantate sind verfügbar und weisen unterschiedliche Charakteristika in der Primärstabilität auf. Biomechanische Untersuchungen zeigen, wie eine Erhöhung der Stabilität durch Implantate neuerer Generation erreicht wird. Entscheidend für die Stabilität ist jedoch nach wie vor die korrekte Reposition und Operationstechnik. Ergänzende Maßnahmen (z. B. die Augmentation) weisen vielversprechende Ansätze auf, jedoch sind weiterführende Untersuchungen und Weiterentwicklungen erforderlich, um die Primärstabilität der instabilen Fraktur bei osteoporotischer Knochenqualität zu optimieren.

Abstract

Biomechanical considerations are relevant in the treatment of peritrochanteric fractures. Concomitant diseases and osteoporosis place high demands on the primary stability of the operative treatment. In the situation of unstable fractures (AO/ASIF 31-A2 and A3), even normal activities of life can easily exceed the critical limits of stability, which can result in implant failure. Both intramedullary and extramedullary implants are used successfully in the treatment of even unstable fractures. Different variations in the implant design and anchorage of the load carrier of the femoral neck are available and may have different biomechanical characteristics. Biomechanical tests show that new developments of implants can increase stability. Nevertheless, accurate reduction and operative technique is essential to ensure uneventful fracture healing. Although some supportive measures are very promising, such as augmentation, further research is required to increase stability in the unstable and osteoporotic fracture situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Al-Munajjed AA, Hammer J, Mayr E et al (2008) Biomechanical characterisation of osteosyntheses for proximal femur fractures: helical blade versus screw. Stud Health Technol Inform 133:1–10

    PubMed  Google Scholar 

  2. Augat P, Rapp S, Claes L (2002) A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma 16:311–316

    Article  PubMed  Google Scholar 

  3. Baumgärtner MR, Curtin SL, Lindskog DM et al (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064

    Google Scholar 

  4. Bergmann G, Deuretzbacher G, Heller M et al (2001) Hip contact forces and gait patterns from routine activities. J Biomech 34:859–871

    Article  PubMed  CAS  Google Scholar 

  5. Born CT, Karich B, Bauer C et al (2010) Hip screw migration testing: First results for hip screws and helical blades utilizing a new oscillating test method. J Orthop Res 29:760–766

    Article  PubMed  Google Scholar 

  6. Curtis MJ, Jinnah RH, Wilson V et al (1994) Proximal femoral fractures: a biomechanical study to compare intramedullary and extramedullary fixation. Injury 25:99–104

    Article  PubMed  CAS  Google Scholar 

  7. Eberle S, Augat P (2009) Biomechanik der Hüfte und des proximalen Femur. Osteologie 18:78–82

    Google Scholar 

  8. Güven M, Yavuz U, Kadioglu B et al (2010) Importance of screw position in intertrochanteric femoral fractures treated by dynamic hip screw. Orthop Traumatol Surg Res 96:21–27

    Article  PubMed  Google Scholar 

  9. Hsueh KK, Fang CK, Chen CM et al (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276

    Article  PubMed  Google Scholar 

  10. Im GI, Shin YW, Song YJ (2005) Potentially unstable intertrochanteric fractures. J Orthop Trauma 19:5–9

    Article  PubMed  Google Scholar 

  11. Kold S, Rahbek O, Vestermark M et al (2005) Bone compaction enhances fixation of weightbearing titanium implants. Clin Orthop Relat Res 431:138–144

    Article  PubMed  Google Scholar 

  12. Kouvidis GK, Sommers MB, Giannoudis PV et al (2009) Comparison of migration behavior between single and dual lag screw implants for intertrochanteric fracture fixation. J Orthop Surg Res 4:16

    Article  PubMed  Google Scholar 

  13. Krischak GD, Augat P, Beck A et al (2007) Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: sliding hip screw and percutaneous compression plate. Clin Biomech (Bristol, Avon) 22:1112–1118

    Google Scholar 

  14. Lenich A, Vester H, Nerlich M et al (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip-Blade vs screw. Injury 41(12):1292–1296

    Article  PubMed  Google Scholar 

  15. Liu Y, Tao R, Liu F et al (2010) Mid-term outcomes after intramedullary fixation of peritrochanteric femoral fractures using the new proximal femoral nail antirotation (PFNA). Injury 41:810–817

    Article  PubMed  Google Scholar 

  16. Lobo-Escolar A, Joven E, Iglesias D et al (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41:1312–1316

    Article  PubMed  Google Scholar 

  17. Lorich DG, Geller DS, Nielson JH (2004) Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect 53:441–454

    PubMed  Google Scholar 

  18. Parker MJ, Handoll HH (2010) Gamma and other cephalocondylic intramedullary nails versus extramedullary implants for extracapsular hip fractures in adults. Cochrane Database Syst Rev CD000093

  19. Phillips AT (2009) The femur as a musculo-skeletal construct: a free boundary condition modelling approach. Med Eng Phys 31:673–680

    Article  PubMed  CAS  Google Scholar 

  20. Roberts CS, Nawab A, Wang M et al (2002) Second generation intramedullary nailing of subtrochanteric femur fractures: a biomechanical study of fracture site motion. J Orthop Trauma 16:231–238

    Article  PubMed  Google Scholar 

  21. Vidyadhara S, Rao SK (2007) One and two femoral neck screws with intramedullary nails for unstable trochanteric fractures of femur in the elderly – randomised clinical trial. Injury 38:806–814

    Article  PubMed  CAS  Google Scholar 

  22. Von der LP, Gisep A, Boner V et al (2006) Biomechanical evaluation of a new augmentation method for enhanced screw fixation in osteoporotic proximal femoral fractures. J Orthop Res 24:2230–2237

    Article  Google Scholar 

  23. Wähnert D, Gudushauri P, Schiuma D et al (2010) Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study. Clin Biomech (Bristol, Avon) 25:1053–1057

    Google Scholar 

  24. Wang CJ, Brown CJ, Yettram AL et al (2000) Intramedullary femoral nails: one or two lag screws? A preliminary study. Med Eng Phys 22:613–624

    Article  PubMed  CAS  Google Scholar 

  25. Windolf M, Braunstein V, Dutoit C et al (2009) Is a helical shaped implant a superior alternative to the Dynamic Hip Screw for unstable femoral neck fractures? A biomechanical investigation. Clin Biomech (Bristol, Avon) 24:59–64

    Google Scholar 

  26. Xu Y, Geng D, Yang H et al (2010) Treatment of unstable proximal femoral fractures: comparison of the proximal femoral nail antirotation and gamma nail 3. Orthopedics 33:473

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krischak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krischak, G., Dürselen, L. & Röderer, G. Versorgung pertrochantärer Femurfrakturen. Unfallchirurg 114, 485–490 (2011). https://doi.org/10.1007/s00113-011-1976-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-011-1976-z

Schlüsselwörter

Keywords

Navigation