Skip to main content
Log in

Gerinnungsmanagement beim Polytrauma

Coagulation management in multiple trauma

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Bei über einem Viertel polytraumatisierter Patienten liegt bereits bei der Aufnahme im Schockraum eine Koagulopathie vor. Sie erhöht das Sterblichkeitsrisiko um das 4-fache. Klinisch für die Diagnosestellung am bedeutsamsten ist die Feststellung einer mikrovaskulären Blutung. Wichtigste Labortests sind die Bestimmung von Fibrinogen, aPTT und Quickwert sowie die Thrombelastometrie. Voraussetzung für eine erfolgreiche Gerinnungstherapie sind die schnellstmögliche Stillung von Blutungen sowie die Behandlung der Hypothermie, Azidose und Hypokalziämie. Die anzustrebenden Zielwerte für Thrombozytenzahl, Fibrinogen, Quick und aPTT sind etabliert. Für den optimalen Einsatz der zur Verfügung stehenden Maßnahmen ist die Verwendung eines Transfusions- und Gerinnungsalgorithmus entscheidend, um den Transfusionsbedarf zu reduzieren und das Behandlungsergebnis zu verbessern. Eine Hyperfibrinolyse sollte frühzeitig erkannt werden, da in dieser Situation die alleinige Gabe von Gerinnungsfaktoren ineffektiv ist. Die Fibrinogengabe korrigiert den zuerst kritisch abfallenden Gerinnungsfaktor, verbessert die globalen Gerinnungstests und senkte in einzelnen Studien die Sterblichkeit. Die erforderliche Dosis (3–5 g) kann über eine Formel berechnet werden. Für die Gabe von Frischplasma wird ein Verhältnis zu transfundierten Erythrozytenkonzentraten von 1:1 oder mindestens 20–40 ml/kg empfohlen. Ein klarer Wirksamkeitsnachweis bzgl. des Überlebens konnte bisher nicht geführt werden, Risiken beinhalten eine unzureichende Fibrinogensubstitution und eine transfusionsbedingte Lungenschädigung (TRALI). Die Zielwerte für die Thrombozytengabe hängen von der Blutungsakuität, dem Verletzungsmuster (z. B. Hirnverletzung) und der klinischen Blutungsneigung ab. Der Faktor VIIa bleibt als Off-label-rescue-Therapie Blutungen vorbehalten, die trotz optimierter Rahmenbedingungen und Ausschöpfung der Standardtherapie nicht zu kontrollieren sind.

Abstract

More than 25% of poytraumatized patients present in the emergency department with a coagulopathy which results in a 4-fold increase in mortality. The detection of microvascular bleeding is the major clinical indicator. Measurement of fibrinogen, activated partial thromboplastin time and prothrombin time as well as thrombelastometry are required. A prerequisite for the substitution of coagulation factors and platelets is an immediate surgical control of bleeding and correction of hypothermia, acidosis and hypocalcemia. The goals for platelet count, fibrinogen, PT and aPTT are well established. The use of an algorithm for transfusion and coagulation management results in optimized therapy and improved outcome. Substituted coagulation products are only effective if hyperfibrinolysis has been corrected before. The administration of fibrinogen corrects the coagulation factor that is critically reduced earliest, improves global coagulation tests and reduced mortality in some studies. The dose required (3-5 g) can be calculated by a formula. Fresh frozen plasma is given in a 1:1 ratio to red blood cells or at least 20-40 ml/kg body weight. A clear advantage for survival has not yet been shown and some of the risks include insufficient substitution of fibrinogen and transfusion-related acute lung injury. Goals for the administration of platelet concentrates depend on the acuity of bleeding, injury pattern (e.g. head trauma) and clinical signs of microvascular bleeding. Factor VIIa remains an off-label rescue therapy if bleeding persists despite optimization of preconditions and specific coagulation management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Abdel-Wahab OI, Healy B, Dzik WH (2006) Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion 46:1279–1285

    Article  PubMed  Google Scholar 

  2. American College of Surgeons Committee on Trauma (2009) Advanced Trauma Life Support for Doctors Student Course Manual. 8th edn. Chicago

  3. American Society of Anesthesiologists (1996) Practice guidelines for blood component therapy: a report by the American Society of Anesthesiologists Task Force on blood component therapy. Anesthesiology 84:732–747

    Article  Google Scholar 

  4. Borgman MA, Spinella PC, Perkins JG et al (2007) The ratio of blood products transfused affects mortality in patients receiving massive transfusions at a combat support hospital. J Trauma 63:805–813

    Article  PubMed  Google Scholar 

  5. Brohi K, Cohen MJ, Davenport RA (2007) Acute coagulopathy of trauma: mechanism, identification and effect. Curr Opin Crit Care 13:680–685

    Article  PubMed  Google Scholar 

  6. Bundesärztekammer (2009) Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten. Deutscher Ärzte-Verlag, Köln

  7. Cardigan R, Philpot K, Cookson P, Luddington R (2009) Thrombin generation and clot formation in methylene blue-treated plasma and cryoprecipitate. Transfusion 49:696–703

    Article  CAS  PubMed  Google Scholar 

  8. Chowdhury P, Saayman AG, Paulus U et al (2004) Efficacy of standard dose and 30 ml/kg fresh frozen plasma in correcting laboratory parameters of haemostasis in critically ill patients. Br J Haematol 125:69–73

    Article  PubMed  Google Scholar 

  9. Cinat ME, Wallace WC, Nastanski F et al (1999) Improved survival following massive transfusion in patients who have undergone trauma. Arch Surg 134:964–968; discussion 968–970

    Article  CAS  PubMed  Google Scholar 

  10. Danes AF, Cuenza LG, Bueno SR et al (2008) Efficacy and tolerability of human fibrinogen concentrate administration to patients with acquired fibrinogen deficiency and active or in high-risk severe bleeding. Vox Sang 94:221–226

    Article  CAS  PubMed  Google Scholar 

  11. Davis A, Mandal R, Johnson M et al (2008) A touch of TRALI. Transfusion 48:541–545

    Article  PubMed  Google Scholar 

  12. Fries D, Innerhofer P, Schobersberger W (2009) Time for changing coagulation management in trauma-related massive bleeding. Curr Opin Anaesthesiol 22:267–274

    Article  PubMed  Google Scholar 

  13. Geeraedts LM Jr, Demiral H, Schaap NP et al (2007) Blind‘ transfusion of blood products in exsanguinating trauma patients. Resuscitation 73:382–388

    Article  PubMed  Google Scholar 

  14. Gonzalez EA, Moore FA, Holcomb JB et al (2007) Fresh frozen plasma should be given earlier to patients requiring massive transfusion. J Trauma 62:112–119

    Article  PubMed  Google Scholar 

  15. Görlinger K, Hanke A, Dirkmann D et al (2009) Impact of a thrombelastometry-based algorithm for point-of-care coagulation management on blood transfusion rate in trauma patients. Hämostaseologie 29:A54

    Google Scholar 

  16. Görlinger K, Jámbor C, Hanke A et al (2007) Perioperative coagulation management and control of platelet transfusion by point-of-care platelet function analysis. Transfus Med Hemother 34:396–411

    Article  Google Scholar 

  17. Hess JR, Brohi K, Dutton RP et al (2008) The coagulopathy of trauma: a review of mechanisms. J Trauma 65:748–754

    Article  CAS  PubMed  Google Scholar 

  18. Hiippala ST, Myllyla GJ, Vahtera EM (1995) Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 81:360–365

    Article  CAS  PubMed  Google Scholar 

  19. Karger R, Adam S, Kretschmer V (2008) Photo-optical end point determination can lead to clinically relevant overestimation of fibrinogen concentration in plasma diluted with hydroxyethyl starch (HES). Hämostaseologie 28:A88

    Google Scholar 

  20. Khan H, Belsher J, Yilmaz M et al (2007) Fresh-frozen plasma and platelet transfusions are associated with development of acute lung injury in critically ill medical patients. Chest 131:1308–1314

    Article  PubMed  Google Scholar 

  21. Lang T, von Depka M (2006) Possibilities and limitations of thromboelastometry/thromboelastography. Hämostaseologie 26:S21–S29

    Google Scholar 

  22. Lang T, Johanning K, Metzler H et al (2009) The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia. Anesth Analg 108:751–758

    Article  PubMed  Google Scholar 

  23. Levrat A, Gros A, Rugeri L et al (2008) Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth 100:792–797

    Article  CAS  PubMed  Google Scholar 

  24. Lier H, Kampe S, Schröder S (2007) Rahmenbedingungen für eine intakte Hämostase. Was muss am Unfallort, im Schockraum und intraoperativ beachtet werden? Anaesthesist 56:239–251

    Article  CAS  PubMed  Google Scholar 

  25. Maegele M, Lefering R, Yucel N et al (2007) Early coagulopathy in multiple injury: an analysis from the German Trauma Registry on 8724 patients. Injury 38:298–304

    Article  PubMed  Google Scholar 

  26. Martini WZ, Cortez DS, Dubick MA et al (2008) Thrombelastography is better than PT, aPTT, and activated clotting time in detecting clinically relevant clotting abnormalities after hypothermia, hemorrhagic shock and resuscitation in pigs. J Trauma 65:535–543

    Article  PubMed  Google Scholar 

  27. Martini WZ (2009) Fibrinogen metabolic response to trauma. Scand J Trauma Resusc Emerg Med 17:2

    Article  PubMed  Google Scholar 

  28. Martinowitz U, Michaelson M (2005) Guidelines for the use of recombinant activated factor VII (rFVIIa) in uncontrolled bleeding: a report by the Israeli Multidisciplinary rFVIIa Task Force. J Thromb Haemost 3:640–648

    Article  CAS  PubMed  Google Scholar 

  29. May AK, Young JS, Butler K et al (1997) Coagulopathy in severe closed head injury: is empiric therapy warranted? Am Surg 63:233–236; discussion 236–237

    CAS  PubMed  Google Scholar 

  30. Rugeri L, Levrat A, David JS et al (2007) Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost 5:289–295

    Article  CAS  PubMed  Google Scholar 

  31. Sarani B, Dunkman WJ, Dean L et al (2008) Transfusion of fresh frozen plasma in critically ill surgical patients is associated with an increased risk of infection. Crit Care Med 36:1114–1118

    Article  PubMed  Google Scholar 

  32. Sauaia A, Moore FA, Moore EE et al (1998) Multiple organ failure can be predicted as early as 12 hours after injury. J Trauma 45:291–301; discussion 301–293

    Article  CAS  PubMed  Google Scholar 

  33. Scalea TM, Bochicchio KM, Lumpkins K et al (2008) Early aggressive use of fresh frozen plasma does not improve outcome in critically injured trauma patients. Ann Surg 248:578–584

    PubMed  Google Scholar 

  34. Schoechl H, Frietsch T, Pavelka M, Jambor C (2009) Hyperfibrinolysis following major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67:125–131

    Article  Google Scholar 

  35. Spahn DR, Cerny V, Coats TJ et al (2007) Management of bleeding following major trauma: a European guideline. Crit Care 11:R17

    Article  PubMed  Google Scholar 

  36. Stinger HK, Spinella PC, Perkins JG et al (2008) The ratio of fibrinogen to red cells transfused affects survival in casualties receiving massive transfusions at an army combat support hospital. J Trauma 64:S79–S85; discussion S85

    Article  CAS  PubMed  Google Scholar 

  37. Theusinger OM, Spahn D, Ganter MT (2009) Transfusion in trauma: why and how should we change our current practice? Curr Opin Anaesthesiol 22:305–312

    Article  PubMed  Google Scholar 

  38. Weinkove R, Rangarajan S (2008) Fibrinogen concentrate for acquired hypofibrinogenaemic states. Transfus Med 18:151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Dr. Klaus Görlinger weist darauf hin, dass er Honorare für wissenschaftliche Vorträge von den Firmen CSL Behring, Novo Nordisk, LFB, Pentapharm, Diagnostica Stago, Triolat und Instrumentation Laboratories erhalten hat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Waydhas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waydhas, C., Görlinger, K. Gerinnungsmanagement beim Polytrauma. Unfallchirurg 112, 942–950 (2009). https://doi.org/10.1007/s00113-009-1681-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-009-1681-3

Schlüsselwörter

Keywords

Navigation