Skip to main content
Log in

Eine neuartige Kniegelenksendoprothese mit physiologischer Gelenkform

Teil 2: Erste klinische Ergebnisse

A new total knee arthroplasty with physiologic ally shaped surfaces

Part 2: First clinical results

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Beim Menschen ist das mediale Tibiaplateau in sagittaler Richtung konkav, das laterale aber konvex gekrümmt. Dadurch wird im Kontakt mit den konvexen Krümmungen der Femurkondylen eine physiologische Rollbewegung („roll-back“) im Kniegelenk während der Standphase induziert. Die meisten derzeit auf dem Markt erhältlichen Kniegelenksendoprothesen berücksichtigen diese morphologischen Gegebenheiten nicht.

Die neuartige Kniegelenksendoprothese AEQUOS G1 orientiert sich an den natürlichen anatomischen Gegebenheiten des Kniegelenks mit einem lateral konvexen Tibiaplateau und einem sagittalen Versatz des medialen und lateralen Kompartiments. Nach Entwicklung und umfangreicher Testung werden die ersten klinischen Ergebnisse einer Multicenterstudie mit der AEQUOS G1-Prothese vorgestellt.

Von Mai 2005 bis März 2007 wurden in vier Kliniken bei 158 Patienten, die bereit waren an der Studie teilzunehmen, eine AEQUOS G1-Kniegelenksendoprothese implantiert. Die Patienten wurden präoperativ sowie 3, 6 und 12 Monate postoperativ anhand eines standardisierten Evaluationsbogens nachuntersucht. Es wurden der American Knee Society Score (AKSS), der modifizierte Oxford Knee Score (OKS) und die visuelle Analogskala (VAS) für den Schmerz erhoben. Zu den vorgesehenen Nachuntersuchungsterminen erschienen nach 3 Monaten 151 Patienten, nach 6 Monaten waren es 134 und nach 12 Monaten 127. Das mittlere Bewegungsausmaß betrug vor der Operation 97° (±19,9°) und nach 12 Monaten 107,5° (±15,9°). Sowohl der AKSS als auch der modifizierte OKS waren nach 12 Monaten mit 165,8 (±34,0) und 21,9 (±7,8) Punkten signifikant besser als vor der Operation (95,8±35,8 und 37,7±6,9 Punkte; p<0,0001). Die VAS Schmerz war vor der Operation 7,4 (±1,8) und nach 12 Monaten 1,9 (±2,2; p<0,001) Punkte. Eine Prothese wurde aufgrund einer Arthrofibrose revidiert, eine weitere aufgrund einer Patellaluxation. Zwei Implantate wurden bei Malalignement und konsekutiver, ligamentärer Instabilität gewechselt. Infekte, aseptische Lockerungen und andere implantatspezifische Komplikationen konnten bisher nicht beobachtet werden.

Die ersten klinischen Resultate der AEQUOS G1-Prothese sind vielversprechend, Langzeitergebnisse müssen jedoch noch abgewartet werden.

Abstract

The human medial tibial plateau is concave, whereas the lateral tibial plateau is convex. In a normal knee, the convex femoral condyles roll and glide on the tibia during the standing phase of walking. The designs of most commercially available knee prostheses do not take this morphological feature into consideration.

The novel design of the AEQUOS G1 knee replacement prosthesis is based on the natural anatomy of the knee joint, with a convex lateral tibia plateau and a sagittal offset of the medial and lateral compartments. Following extensive development and testing, initial clinical results of the AEQUOS G1 prosthesis in a mulitcenter study are presented.

From Mai 2005 to March 2007, 158 patients in 4 clinics underwent total knee arthroplasty with the AEQUOS G1 and agreed to participate in the study. Patients were evaluated preoperatively and at 3, 6 and 12 months of follow-up using a standardized protocol that included the American Knee Society Score (AKSS), the Oxford Knee Score (OKS) and the Visual Analog Scale (VAS) for pain. After 3 months, 151 patients appeared for follow up appointments, after 6 months, 134, and after 12 months, 127. The mean range of motion preoperatively was 97.0° (±19.9°) and 107.5° (±15.9°) 12 months after surgery. The AKSS, as well as the modified OKS, significantly improved (p<0.0001) from preoperative scores of 98.8 (±35.8) and 37.3 (±6.9) points, respectively, to 165.8 (±34.1) and 21.9 (±7.8) points, preoperatively, and 12 months postoperatively. The VAS score significantly decreased (p<0.001) from 7.4 (±1.8) points preoperatively to 1.9 (±2.2) points 12 months postoperatively.

One implant was revised because of arthrofibrosis and another due to patellar luxation. Two patients required revision because their implants revealed malalignement with ligamentous instability. No infections, aseptic loosening or other implant-specific complications were observed at this early follow-up.

Good clinical results were observed at early follow-up with the AEQUOS G1 knee arthroplasty. However, longer follow-up is necessary for a general evaluation of the implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Banks SA, Fregly BJ, Boniforti F et al (2005) Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Knee Surg Sports Traumatol Arthrosc (7):551–556

    Article  Google Scholar 

  2. Brinker MR, Lund PJ, Barrack RL (1997) Demographic biases of scoring instruments for the results of total knee arthroplasty. J Bone Joint Surg Am 79(6):858–865

    PubMed  CAS  Google Scholar 

  3. DeBeer J, Petruccelli D, Gandhi R, Winemaker M (2005) Primary total knee arthroplasty in patients receiving worker‘s compensation benefits. J Can Surg 48(2):100–105

    Google Scholar 

  4. Dennis DA, Komistek RD, Mahfouz MR et al (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res (416):37–57

    Article  Google Scholar 

  5. D’Lima DD, Trice M, Urquhart AG, Colwell CW Jr (2000) Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clin Orthop Relat Res (380):151–157

    Google Scholar 

  6. Diduch DR, Insall JN, Scott WN et al (1997) The total knee replacement in young, active patients. J Bone Joint Surg 79-A:575–582

    Google Scholar 

  7. Essner A, Wang A, Stark C, Dumbleton JH (1996) A simulator fort he evaluation of total knee replacement wear. Proceddings of Fifth World Biomaterials Congress, May 29 – June 2 Toronto, Canada

  8. Ethgen O, Bruyere O, Richy F et al (2004) Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg Am 86:963–974

    PubMed  Google Scholar 

  9. Fischer O (1907) Kinematik organischer Gelenke. Vieweg, Braunschweig

  10. Fuchs S, Jerosch J (1996) Knieendoprothetik–Eine Standortbestimmung. Unfallchirurg 99:958–963

    Article  PubMed  CAS  Google Scholar 

  11. Fuchs S, Schütte G, Witte H, Rosenbaum D (2000) Which retropatellar changes result from implantation of knee arthroplasty? Unfallchirurg 103:972–976

    Article  PubMed  CAS  Google Scholar 

  12. Furman BD, Li St (1999) The first knee simulator evaluation of real time oxidation on UHMWPE wear and damage of tibial inserts. Society for biomaterials: 25th Annual Meeting Transactions p. 474

    Google Scholar 

  13. Gerich T, Bosch U, Schmidt E et al (2001) Knieendoprothetik nach Tibiakopffraktur–Mittelfristige Ergebnisse einer Kohortenanalyse. Unfallchirurg 104:414–419

    Article  PubMed  CAS  Google Scholar 

  14. Harman MK, Banks SA, Hodge WA (2001) Polyethylene damage and knee kinematics after total knee arthroplasty. Clin Orthop Relat Res 392:383–393

    Article  PubMed  Google Scholar 

  15. Hilding MB, Ryd L, Toksvig-Larsen S et al (1999) Gait affects tibial component fixation. J Arthroplasty 14(5):589–593

    Article  PubMed  CAS  Google Scholar 

  16. Insall JN, Dorr LD, Scott RD, Scott WN (1989) Rationale of the Knee Society clinical rating system. Clin Orthop Relat Res 248:13–14

    PubMed  Google Scholar 

  17. Isaac DL, Beard DJ, Price AJ et al (2005) In-vivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. Knee 12(1):25–31

    Article  PubMed  CAS  Google Scholar 

  18. Jerosch J, Floren M (2000) Lebensqualitätsgewinn (SF-36) nach Implantation einer Knieendoprothese. Unfallchirurg 103:371–374

    Article  PubMed  CAS  Google Scholar 

  19. Johnson TS, Laurent MP, Yao JQ, Gilbertson LN (2001) The effect of displacement control input parameters on tibiofemoral prostheitic knee wear. Wear 250:222–226

    Article  Google Scholar 

  20. Komistek RD, Dennis DA, Mabe JA (1998) In vivo determination of patellofemoral separation and linear impulse forces. Orthopäde 27(9):612–618

    PubMed  CAS  Google Scholar 

  21. Kruckhans AR, Dustmann HO (2004) Indications, methods, and results of cemented, hybrid and cement-free implantation of THR. Surg Technol Int 12:253–257

    PubMed  Google Scholar 

  22. Kubein-Meesenburg D, Abicht CH, Dathe H et al (2002) The functional HJS-knee-endoprosthesis with roll-off articular surfaces during the stance phase. Acta of Bioengineering and Biomechanics 4(Suppl. 1):348–349

    Google Scholar 

  23. Lewandowski PJ, Askew MJ, Lin DF et al (1997) Kinematics of posterior cruciate ligament-retaining and-sacrificing mobile bearing total knee arthroplasties. An in vitro comparison of the New Jersey LCS meniscal bearing and rotating platform prostheses. J Arthroplasty 12(7):777–784

    Article  PubMed  CAS  Google Scholar 

  24. Li G, Suggs J, Hanson G et al (2006) Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty. J Bone Joint Surg Am 88(2):395–402

    Article  PubMed  Google Scholar 

  25. Lingard EA, Katz JN, Wright EA, Sledge CB (2004) Kinemax outcomes group. Predicting the outcome of total knee arthroplasty. J Bone Joint Surg Am 86-A(10):2179–2186

    Google Scholar 

  26. Linsell L, Dawson J, Zondervan K et al (2006) Pain and overall health status in older people with hip and knee replacement: a population perspective. J Public Health 10:1093

    Google Scholar 

  27. Menchetti PP, Walker PS (1997) Mechanical evaluation of mobile bearing knees. Am J Knee Surg 10(2):73–81

    PubMed  CAS  Google Scholar 

  28. Merx H, Dreinhofer K, Schrader P (2003) International variation in hip replacement rates. Ann Rheum Dis 62:222–226

    Article  PubMed  CAS  Google Scholar 

  29. Nägerl H, Kubein-Meesenburg D, Cotta H, Fanghänel J (1993) Biomechanische Prinzipien in Diarthrosen und Synarthrosen. Teil III: Mechanik des Tibiofemoralgelenkes und Rolle der Kreuzbänder. Z Orthop 131:385–396

    Article  PubMed  Google Scholar 

  30. Noble PC, Gordon MJ, Weiss JM et al (2005) Does total knee replacement restore normal knee function? Clin Orthop Relat Res 431:157–165

    Article  PubMed  Google Scholar 

  31. Ostermeier S, Nowakowski A, Stukenborg-Colsman C (2003) Dynamic in vitro measurement of pressure and movement with the LCS prosthetic system. Orthopade 32(4):292–295

    Article  PubMed  CAS  Google Scholar 

  32. Pandit H, Ward T, Hollinghurst D et al (2005) Influence of surface geometry and the cam-post mechanism on the kinematics of total knee replacement. J Bone Joint Surg Br 87:940–945

    Article  PubMed  CAS  Google Scholar 

  33. Parvizi J, Rapuri VR, Saleh KJ et al (2005) Failure to resurface the patella during total knee arthroplasty may result in more knee pain and secondary surgery. Clin Orthop Relat Res 438:191–196

    Article  PubMed  Google Scholar 

  34. Pinskerova V, Johal P, Nakagawa S et al (2004) Does the femur roll-back with flexion? J Bone Joint Surg Br 86-B:925–931

    Google Scholar 

  35. Pynsent PB, Adams DJ, Disney SP (2005) The oxford hip and knee outcome questionaires for arthroplasty – outcomes and standards for surgical audit. J Bone Joint Surg Br 87:241–248

    Article  PubMed  CAS  Google Scholar 

  36. Quintana JM, Escobar A, Arostegui I et al (2006) Health-related quality of life and appropriateness of knee or hip joint replacement. Arch Intern Med 166:220–226

    Article  PubMed  Google Scholar 

  37. Robertsson O, Ranstam J, Lidgren L (2006) Variation in outcome and ranking of hospitals: an analysis from the Swedish knee arthroplasty register. Acta Orthop. 77(3):487–493

    Google Scholar 

  38. Siebel T, Kafer W (2004) Modification of the posterior cruciate ligament tension following total knee arthroplasty: comparison of the Genesis CR and LCS meniscal bearing prostheses. Knee 11(3):203–208

    Article  PubMed  Google Scholar 

  39. Stiehl JB, Komistek RD, Cloutier JM, Dennis DA (2000) The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty 15(5):545–550

    Article  PubMed  CAS  Google Scholar 

  40. Stiehl JB, Komistek RD, Dennis DA, Keblish PA (2001) Kinematics of the patellofemoral joint in total knee arthroplasty. J Arthroplasty 16(6):706–714

    Article  PubMed  CAS  Google Scholar 

  41. Stukenborg-Colsman C, Ostermeier S, Wenger KH, Wirth CJ (2002) Relative motion of a mobile bearing inlay after total knee arthroplasty–dynamic in vitro study. Clin Biomech (Bristol, Avon) 17(1):49–55

    Google Scholar 

  42. Tibesku CU (2005) Einfluß mobiler Polyethylengleitlager auf die Kinematik nach Knietotalendoprothetik. Habilitationsschrift

  43. Uvehammer J, Karrholm J, Brandsson S et al (2000) In vivo kinematics of total knee arthroplasty: flat compared with concave tibial joint surface. J Orthop Res 18(6):856–864

    Article  PubMed  CAS  Google Scholar 

  44. Walker PS, Blunn GW, Perry JP et al (2000) Methodology for long-term wear testing of total knee replacements Clin Orthop Relat Res 372:290–301

    Google Scholar 

  45. Witvoet J, Huten D, Masse Y et al (2005) Mid-term results of Wallaby I posterior cruciate retaining total knee arthroplasty: a prospective study of the first 425 cases. Rev Chir Orthop Reparatrice Appar Mot 91(8):746–757

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung/en hin: Dem Autor wurden von der Firma AEQUOS Reisekosten für wissenschaftliche Vorträge erstattet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-H. Frosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frosch, KH., Nägerl, H., Kubein-Meesenburg , D. et al. Eine neuartige Kniegelenksendoprothese mit physiologischer Gelenkform. Unfallchirurg 112, 176–184 (2009). https://doi.org/10.1007/s00113-008-1551-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-008-1551-4

Schlüsselwörter

Keywords

Navigation