Skip to main content

Advertisement

Log in

Einheilung vaskularisierter Knochenallotransplantate

Optimierung durch Kurzzeit-Immunsuppression und der empfängerbasierten Neovaskularisation

Healing of free vascularized bone allotransplants

Optimizing by short-term immunosuppression and host-derived neovascularization

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Vaskularisierte Knochenallotransplantate (AT) bedürfen derzeit der Langzeit-Immunsuppression (IS), was für den Extremitätenerhalt nur schwer zu rechtfertigen ist. Eine alternative Methode, um das Überleben der Transplantate zu ermöglichen, besteht in der empfängerbasierten Neovaskularisation während einer Kurzzeit-IS.

Material und Methoden

In Hollandkaninchen wurden diaphysäre Femurdefekte durch mikrochirurgisch revaskularisierte AT von Neuseelandkaninchen rekonstruiert. Zusätzlich erfolgte die intramedulläre Platzierung eines Faszienlappens vom Empfänger sowie Kurzzeit-IS in 2 von 4 Gruppen. Die Vaskularisation und Einheilung wurden mittels Mikroangiographie und eines Röntgenscores untersucht.

Ergebnisse

Knochen-AT mit durchblutetem Faszienlappen und Kurzzeit-IS hatten die höchste Neovaskularisationsrate und heilten ähnlich schnell ein wie vaskularisierte Autotransplantate ohne signifikantem Unterschied in den Röntgenscores. Vaskularisierte AT ohne diese Kombination waren unterlegen.

Schlussfolgerung

Der gesteigerte Knochenumbau erlaubt eine gute Heilung. Das Transplantat kann vorübergehend geschwächt sein, jedoch wird möglicherweise durch intensivere Remodellierung mit Empfängerzellen auf lange Sicht ein stabilerer Knochen erzielt als bei avaskulären Transplantaten.

Abstract

Background

Living bone allotransplants (ATs) currently require long-term immunosuppression (IS), but this is impractical for extremity-preserving procedures. An alternative method to maintain viability of the transplant uses host-derived neoangiogeneic vessels combined with short-term IS.

Materials and Methods

Diaphyseal femoral defects in Dutch-Belted rabbits were reconstructed with a free microvascular AT from New Zealand White rabbits. Additionally, a host-derived intramedullary pedicled fascial flap was placed and short-term IS administered to two of four groups. Neovascularization and bone healing were quantified by microangiography and a custom radiographic score.

Results

Bone ATs with perfused fascial flaps achieved bone healing equivalent to autotransplant controls, even when they received IS only until host-derived neoangiogenesis replaced the original perfusion. Vascularized ATs without this combination achieved significantly inferior results.

Summary

This rabbit model demonstrated that increased bone turnover allows good healing but may temporarily weaken the allotransplant. However, by the more intense replacement of the graft with host-derived cells, this process may, in the long-term, ultimately result in a better transplant than an avascular graft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Bishop AT, Pelzer M (2007) Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 38:109–122 vii

    Article  PubMed  Google Scholar 

  2. Chiron P, Colombier JA, Tricoire JL et al (1990) A large vascularized allograft of the femoral diaphysis in man. Int Orthop 14:269–272

    Article  PubMed  CAS  Google Scholar 

  3. Doi K, Kawai S, Shigetomi M (1996) Congenital tibial pseudoarthrosis treated with vascularised bone allograft. Lancet 347:970–971

    Article  PubMed  CAS  Google Scholar 

  4. Hofmann GO, Kirschner MH, Buhren V, Land W (1995) Allogenic vascularized transplantation of a human femoral diaphysis under cyclosporin A immunosuppression. Transpl Int 8:418–419

    Article  PubMed  CAS  Google Scholar 

  5. Hofmann GO, Kirschner MH, Wagner FD et al (1997) Allogeneic vascularized grafting of a human knee joint with postoperative immunosuppression. Arch Orthop Trauma Surg 116:125–128

    Article  PubMed  CAS  Google Scholar 

  6. Diefenbeck M, Wagner F, Kirschner MH et al (2007) Outcome of allogeneic vascularized knee transplants. Transpl Int 20:410–418

    Article  PubMed  Google Scholar 

  7. Diefenbeck M, Wagner F, Kirschner MH et al (2006) Management of acute rejection 2 years after allogeneic vascularized knee joint transplantation. Transpl Int 19:604–606

    Article  PubMed  CAS  Google Scholar 

  8. Tilney NL, Whitley WD, Diamond JR et al (1991) Chronic rejection-an undefined conundrum. Transplantation 52:389–398

    Article  PubMed  CAS  Google Scholar 

  9. Pelzer M, Larsen M, Chung YG et al (2006) Short-term immunosuppression and surgical neoangiogenesis with host vessels maintains long-term viability of vascularized bone allografts. J Orthop Res 25:370–377

    Article  Google Scholar 

  10. Ohno T, Pelzer M, Larsen M et al (2007) Host-derived angiogenesis maintains bone blood flow after withdrawal of immunosuppression. Microsurgery 27:657–663

    Article  PubMed  Google Scholar 

  11. Giessler GA, Zobitz M, Friedrich PF, Bishop AT (2008) Transplantation of a vascularized rabbit femoral diaphyseal segment: mechanical and histologic properties of a new living bone transplantation model. Microsurgery 28:291–299

    Article  PubMed  Google Scholar 

  12. Giessler GA, Gades NM, Friedrich PF, Bishop AT (2007) Severe tacrolimus toxicity in rabbits. Exp Clin Transplant 5:590–595

    PubMed  Google Scholar 

  13. Giessler GA, Friedrich PF, Shin RH, Bishop AT (2007) The superficial inferior epigastric artery fascia flap in the rabbit. Microsurgery 27:560–564

    Article  PubMed  Google Scholar 

  14. Taira H, Moreno J, Ripalda P, Forriol F (2004) Radiological and histological analysis of cortical allografts: an experimental study in sheep femora. Arch Orthop Trauma Surg 124:320–325

    Article  PubMed  Google Scholar 

  15. Weiland AJ, Phillips TW, Randolph MA (1984) Bone grafts: a radiologic, histologic and biomechanical model comparing autografts, allografts and free vascularized bone grafts. Plast Reconstr Surg 74:368–379

    Article  PubMed  CAS  Google Scholar 

  16. Vossen M, Majzoub RK, Edelstein J et al (2005) Bone quality in swine composite tissue allografts: effects of combination immunotherapy. Transplantation 80:487–493

    Article  PubMed  CAS  Google Scholar 

  17. Cunningham CD 3rd, Schulte BA, Bianchi LM et al (2001) Microwave decalcification of human temporal bones. Laryngoscope 111:278–282

    Article  PubMed  Google Scholar 

  18. Spalteholz W (1914) Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seine theoretischen Bedingungen. Nebst Anhang: Über Knochenfärbung. S. Hirzel, Leipzig

    Google Scholar 

  19. Hofmann GO, Kirschner MH, Wangemann T et al (1995) Infections and immunological hazards of allogeneic bone transplantation. Arch Orthop Trauma Surg 114:159–166

    Article  PubMed  CAS  Google Scholar 

  20. Shin AY, Bishop AT (2002) Pedicled vascularized bone grafts for disorders of the carpus: scaphoid nonunion and Kienbock’s disease. J Am Acad Orthop Surg 10:210–216

    PubMed  Google Scholar 

  21. Hussl H, Sailer R, Daniaux H, Pechlaner S (1989) Revascularization of a partially necrotic talus with a vascularized bone graft from the iliac crest. Arch Orthop Trauma Surg 108:27–29

    Article  PubMed  CAS  Google Scholar 

  22. Suzuki O, Bishop AT, Sunagawa T et al (2004) VEGF-promoted surgical angiogenesis in necrotic bone. Microsurgery 24:85–91

    Article  PubMed  Google Scholar 

  23. Sunagawa T, Bishop AT, Muramatsu K (2000) Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: A canine experimental study. J Hand Surg [Am] 25:849–859

    Google Scholar 

  24. Hori Y, Tamai S, Okuda H et al (1979) Blood vessel transplantation to bone. J Hand Surg [Am] 4:23–33

    Google Scholar 

  25. Doi K, Akino T, Shigetomi M et al (1998) Revascularized intercalary bone allografts with short-term immunosuppression with cyclosporine in the canine. Plast Reconstr Surg 101:793–801

    Article  PubMed  CAS  Google Scholar 

  26. Ikebe S, Masumi S, Yano H et al (1996) Immunosuppressive effect of tacrolimus (FK-506). Bone xenografts in rabbits. Acta Orthop Scand 67:389–392

    Article  PubMed  CAS  Google Scholar 

  27. Lee WP, Pan YC, Kesmarky S et al (1995) Experimental orthotopic transplantation of vascularized skeletal allografts: functional assessment and long-term survival. Plast Reconstr Surg 95:336–349 (discussion 350–333)

    Article  PubMed  CAS  Google Scholar 

  28. Manthey N, Kirschner MH, Nerlich A et al (2001) 3-phase bone imaging and SPECT in the follow up of patients with allogenic vascularized knee joint transplants. Nuklearmedizin 40:187–192

    PubMed  CAS  Google Scholar 

  29. Hofmann GO, Kirschner MH (2000) Clinical experience in allogeneic vascularized bone and joint allografting. Microsurgery 20:375–383

    Article  PubMed  CAS  Google Scholar 

  30. Li XQ, Stevenson S, Klein L et al (1991) Differential patterns of incorporation and remodeling among various types of bone grafts. Acta Anat (Basel) 140:236–244

    Google Scholar 

  31. Randzio J, Kniha H, Gold ME et al (1991) Growth of vascularized composite mandibular allografts in young rabbits. Ann Plast Surg 26:140–148

    Article  PubMed  CAS  Google Scholar 

  32. Kumta S, Yip K, Roy N et al (1996) Revascularisation of bone allografts following vascular bundle implantation: an experimental study in rats. Arch Orthop Trauma Surg 115:206–210

    Article  PubMed  CAS  Google Scholar 

  33. Pelzer M, Larsen M, Friedrich PF, Bishop AT (2008) Measurement of bone blood flow using the hydrogen washout Technique-Part I: Quantitative evaluation of tissue perfusion in the laboratory rat. J Orthop Res

  34. Polykandriotis E, Arkudas A, Euler S et al (2006) Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir 38:217–223

    Article  PubMed  CAS  Google Scholar 

  35. Muramatsu K, Kurokawa Y, You-Xin S et al (2005) Cell traffic between donor and recipient following rat limb allograft. J Orthop Res 23:181–187

    Article  PubMed  CAS  Google Scholar 

  36. Muramatsu K, Bishop AT (2002) Microchimerism following vascularized bone allotransplantation. Transplant Proc 34:2722–2724

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.A. Giessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giessler, G., Friedrich, P., Shin, R. et al. Einheilung vaskularisierter Knochenallotransplantate. Unfallchirurg 112, 479–486 (2009). https://doi.org/10.1007/s00113-008-1525-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-008-1525-6

Schlüsselwörter

Keywords

Navigation