Skip to main content
Log in

3D-navigierte Fersenbeinosteosynthese

Offene und minimal-invasive Technik

3D navigated osteosynthesis of calcaneal fractures

Open and minimally invasive techniques

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Als Arbeitshypothese wird formuliert, dass Fehlplatzierungen gelenknah positionierter Sustentakulumschrauben im Rahmen der Osteosynthese von intraartikulären Fersenbeinfrakturen prinzipiell vermieden werden können. Hierzu werden ein Verfahren zur 3D-navigierten Implantation von Sustentakulumschrauben vorgestellt und erste Ergebnisse präsentiert.

Material und Methoden

Bei 11 Patienten wurden insgesamt 15 intraartikuläre Fersenbeinfrakturen operativ 3D-navigiert (3D-Bildwandler mit integrierter Navigation) versorgt. Bei 12 Frakturen erfolgte die Osteosynthese über einen“extended lateral approach”, bei 3 weiteren in minimal-invasiver Technik. Ein zweiter intraoperativer 3D-Scan dokumentierte das definitive Osteosyntheseergebnis.

Ergebnisse

Insgesamt wurden 20 Sustentakulumschrauben 3D-navigiert implantiert. Alle Schrauben lagen präzise im Sustentakulumfragment ohne Gelenkkontakt. Der Einsatz der Navigation bedingte eine durchschnittliche Verlängerung der Operationszeit um 11,9±2,2 Minuten.

Schlussfolgerung

Durch die Synthese von intraoperativer bildwandlergestützter 3D-Bildgebung und -Navigation ist die Implantation von Sustentakulumschrauben präzise möglich. Dadurch kann bei minimal-invasiver Operationstechnik eine hohe Osteosynthesequalität erreicht werden.

Abstract

Background

It is hypothesized that misplacement of sustentacular screws during osteosynthesis of intraarticular calcaneal fractures can be reduced with the help of navigation. A method for three-dimensional (3D) navigated placement of sustentacular screws for treating intraarticular calcaneal fractures is presented and evaluated.

Material and Methods

11 consecutive patients with 15 intraarticular calcaneal fractures were treated using 3D navigation. In 12 cases osteosynthesis was done through an extended lateral approach; in three cases, it was achieved through a minimally invasive percutaneous approach. For verification and documentation of the placed screws, a second 3D scan was performed.

Results

A total of 20 screws were placed using 3D navigation. None of the navigated screws was misplaced. Extra operating time due to navigation averaged 11.9 minutes (±2.2 min).

Conclusion

Through a combination of intraoperative 3D imaging and navigation, placement of sustentacular screws is possible and can yield precise and reliable results. Especially in minimally invasive treatment, a high quality of osteosynthesis can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Abidi NA, Dhawan S, Gruen GS et al (1998) Wound-healing risk factors after open reduction and internal fixation of calcaneal fractures. Foot Ankle Int 19(12):856–861

    PubMed  CAS  Google Scholar 

  2. Atesok K, Finkelstein J, Khoury A et al (2007) The use of intraoperative three-dimensional imaging (ISO-C-3D) in fixation of intraarticular fractures. Injury Int J Care Injured 38:1163–1169

    CAS  Google Scholar 

  3. Benirschke SK, Kramer PA (2004) Wound healing complications in closed and open calcaneal fratures. J Orthop Trauma 18(1):1–6

    Article  PubMed  Google Scholar 

  4. Buckley R, Tough S, McCormack R et al (2002) Operative compared with nonoperative treatment of displaced intra-articular calcaneal fractures: a prospedctive, randomized, controlled multicenter trial. J Bone Joint Surg Am 84:1733–1744

    PubMed  Google Scholar 

  5. Burdeaux BD (1983) Reduction of calcaneal fractures by the McReynolds medial approach technique and Its experimental basis. Clin Orthop 177:87–103

    PubMed  Google Scholar 

  6. Carr JB (2005) Surgical treatment of intra-articular calcaneal fractures. J Orthop Trauma 19:109–117

    Article  PubMed  Google Scholar 

  7. Essex-Lopresti P (1993) The Classic: The mechanism,reduction technique and results in fractures of the os calcis. Clin Orthop 290:3–16

    PubMed  Google Scholar 

  8. Euler E, Wirth S, Linsenmaier U et al (2001) Vergleichende Untersuchung zur Qualität der C-Bogen-basierten 3D-Bildgebung am Talus. Unfallchirurg 104:839–846

    Article  PubMed  CAS  Google Scholar 

  9. Folk JW, Starr AJ, Early JS (1999) Early wound complications of operative treatment of calcaneus fractures: analysis of 190 fractures. J Orthop Trauma 13:369–372

    Article  PubMed  CAS  Google Scholar 

  10. Gavlik JM, Rammelt S, Zwipp H (2002) Percutaneous, arthroscopically-assisted osteosynthesis of calcaneus fractures. Arch Orthop Trauma Surg 122:424–428

    PubMed  Google Scholar 

  11. Grützner PA, Beutler T, Wendl K et al (2004) Navigation an der Brust- und Lendenwirbelsäule mit dem 3D-Bildwandler. Chirurg 75:967–975

    Article  PubMed  Google Scholar 

  12. Howard JL, Buckley JLH, McCormack R et al (2003) Complications following management of displaced intra-articular calcaneal fractures: a prospective randomized trial comparing open reduction internal fixation with nonoperative management. J Orthop Trauma 17(4):241–249

    Article  PubMed  CAS  Google Scholar 

  13. Hüfner T, Gebhard F, Grützner PA et al (2004) Which navigation when? Injury Int J Care Injured 35:30–34

    Google Scholar 

  14. Kotsianos D, Rock C, Euler E et al (2001) 3D-Bildgebung an einem mobilen chirurgischen Bildverstärker (ISO-C-3D). Unfallchirurg 104:834–838

    Article  PubMed  CAS  Google Scholar 

  15. Levine DS, Helfet DL (2001) An introduction to the minimally invasive osteosynthesis of intra-articular calcaneal fractures. Injury Int Care Injured 32:51–54

    Google Scholar 

  16. Park IH, Song KW, Shin SI et al (2000) Displaced intra-articular calcaneal frature treated surgically with limited posterior incision. Foot Ankle Int 21(3):195–205

    PubMed  CAS  Google Scholar 

  17. Queitsch C, Schulz AP, Haustedt N et al (2006) Improved therapy of calcaneal fractures by intraoperative 3d-fluoroscopy and locked-screw plate fixation. Eur J Trauma 32:471–476

    Article  Google Scholar 

  18. Rammelt S, Zwipp H (2004) Calcaneus fractures: facts, controversies and recent developments. Injury Int Care Injured 35:443–461

    Google Scholar 

  19. Rammelt S, Amlang M, Barthel S, Zwipp H (2004) Minimally-invasive treatment of calcaneal fractures. Injury Int Care Injured 35:B56–B63

    Google Scholar 

  20. Richter M, Geerling J, Zech S et al (2005) Intraoperative three-dimensional imaging with a motorized c-arm (SIREMOBIL ISO-C-3D) in foot and ankle trauma care. J Orthop Trauma 19(4):259–266

    Article  PubMed  Google Scholar 

  21. Rübberdt A, Feil R, Stengel D et al (2006) Die klinische Wertigkeit des Iso-C 3D bei der Osteosynthese des Fersenbeins. Unfallchirurg 109:112–118

    Article  PubMed  Google Scholar 

  22. Schepers T, Schipper IB, Vogels LM et al (2007) Percutaneous treatment of displaced intra-articular calcaneal fractures. J Orthop Sci 12:22–27

    Article  PubMed  Google Scholar 

  23. Schildhauer TA, Sangeorzan BJ (2002) Push screw for indirect reduction of severe joint depression-type calcaneal fractures. J Orthop Trauma 16:422–424

    Article  PubMed  Google Scholar 

  24. Stephenson JR (1993) Surgical treatment of displaced intraarticular fractures of the calcaneus. A combined lateral and medial approach. Clin Orthop 290:68–75

    PubMed  Google Scholar 

  25. Stöckle U, König B, Schaser K et al (2003) CT- und fluoroskopiebasierte Navigation in der Beckenchirurgie. Unfallchirurg 106:914–920

    PubMed  Google Scholar 

  26. Stöckle U, Schäffler A, König B, Haas NP (2006) Integrierte Navigation. Unfallchirurg 109:925–931

    Article  PubMed  Google Scholar 

  27. Stulik J, Stehlik J, Rysavy M, Wozniak A (2006) Minimally-invasive treatment of intraarticular fractures of the calcaneum. J Bone Joint Surg 88-B (12):1634–1641

  28. Talarico LM, Vito GR, Zyryanov SY (2004) Management of displaced intraarticular calcaneal fractures by using external ring fixation, minimally invasive open reduction and early weightbearing. Foot Ankle Int 43:43–50

    Article  Google Scholar 

  29. Tornetta P 3rd (2000) Percutaneous treatment of calcaneal fractures. Clin Orthop 375:91–96

    Article  PubMed  Google Scholar 

  30. Wendl K, Recum J, Wentzensen A, Grützner PA (2007) Intraoperative three-dimensional imaging in trauma surgery. Poster 1241, 8th EFORT Congress 11. bis 15.05.2007, Florenz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rübberdt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rübberdt, A., Hofbauer, V., Herbort, M. et al. 3D-navigierte Fersenbeinosteosynthese. Unfallchirurg 112, 15–22 (2009). https://doi.org/10.1007/s00113-008-1520-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-008-1520-y

Schlüsselwörter

Keywords

Navigation