Skip to main content

Advertisement

Log in

Therapieerfolg bei atrophen Tibiaschaftpseudarthrosen

Bone Morphogenetic Protein 7 (BMP 7) versus autologe Spongiosaplastik

Therapeutic outcome in tibial pseudarthrosis

Bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Je nach Frakturtyp und Lokalisation beträgt die Pseudarthrosenrate bei Tibiaschaftfrakturen 10% bis 40%. Alternativ zur Spongiosaplastik kann seit 2001 der Knochenwachstumsfaktor Bone Morphogenetic Protein 7 (BMP 7, Osigraft®) bei Revisionen eingesetzt werden. Ziel dieser Studie war es, die Effizienz der ersten Spongiosaplastik gegenüber BMP 7 bei verzögerter Frakturheilung zu bestimmen. Von 01/1995 bis 12/2002 erhielten 82 Patienten (Gruppe 1) bei verzögerter Frakturheilung als erste Therapiemaßnahme eine Eigenknochentransplantation. Zum Vergleich (Gruppe 2) dienten 26 Patienten, bei denen durchschnittlich nach 4 erfolglosen Revisionen im Zeitraum von 05/2002 bis 06/2005 BMP 7 lokal implantiert wurde. Als erfolgreiche Heilung wurde eine radiologisch erkennbare Durchbauung der Fraktur gewertet. In Gruppe 1 mit alleiniger Eigenknochentransplantation, wiesen 24 Patienten (28%) nach 4 Monaten und in Gruppe 2 mit BMP-7-Implantation 2 Patienten (8%) keine knöcherne Durchbauung auf (p=0,025). Die BMP-7-Gruppe zeigte trotz eines ungünstiger selektierten Patientenkollektivs eine signifikant höhere Heilungsrate gegenüber der Gruppe mit Eigenspongiosatransplantation.

Abstract

Depending on the type and localisation, nonunions of tibial fractures will occur in 10–40% of cases. Bone morphogenetic protein 7 (BMP-7; Osigraft), a recombinant bone growth factor, can be implanted locally as an alternative to autologous bone grafting. The objective of our study was to compare the efficiency of the two procedures. From January 1995 to December 2002, 82 patients (group 1) with delayed union of a tibial fracture received autologous bone grafting as their first procedure. To compare their results with the efficiency of BMP-7, between May 2002 and June 2005 we followed up on 26 patients (group 2) who had local implantation of BMP-7 after having had, on average, four surgical procedures. Healing was considered successful if x-rays showed bony consolidation and if no further procedure was necessary. Group 1 had no signs of consolidation in 24 cases (28%), whereas group 2 had only two (8%) such patients (p=0.025). The BMP-7 group showed a significantly higher success rate compared with patients with autologous bone grafting, despite the fact that the BMP-7 group contained more complicated cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Allan HL, Wase A, Bear WT (1980) Indomethacin and aspirin: Effect of nonsteroidal anti-inflammatory agents on the rate of fracture repair in the rat. Acta Orthop Scand 51: 595–600

    Google Scholar 

  2. Augat P, Merk J, Ingnatius A et al. (1996) Early, full weight-bearing with flexible fixation delays fracture healing. Clin Orthop 328: 194–202

    Article  PubMed  Google Scholar 

  3. Brinker MR, Bailey DE Jr (1997) Fracture healing in tibia fractures with an associated vascular injury. J Trauma 42: 11–19

    CAS  PubMed  Google Scholar 

  4. Claes L, Augat P, Suger G, Wilke HJ (1997) Influence of size and stability of the osteotomy gap on success of fracture healing. J Orthop Res 15: 577–584

    Article  CAS  PubMed  Google Scholar 

  5. Cook SD, Ryaby JB, McCabe J et al. (1997) Acceleration of tibial and distal radius fracture healing in patients who smokes. Clin Orthop 337: 198–207

    Article  PubMed  Google Scholar 

  6. Cruess RL, Sakai T (1972) The effect of cortisone upon synthesis rates of some components of rat bone matrix. Clin Orthop 86: 253–259

    Article  CAS  PubMed  Google Scholar 

  7. Daftari TK, Whitesides TE, Heller JG et al. (1994) Nicotine on the revascularization of bone graft: An experimental study in rabbits. Spine 19: 904–911

    Article  CAS  PubMed  Google Scholar 

  8. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop (Suppl) 355: 7–21

    Google Scholar 

  9. Einhorn TA, Bonnarens F, Burnstein AH (1986) The contributions of dietary protein and mineral to the healing of experimental fractures. An biomechanical study. J Bone Joint Surg Am 68: 1389–1395

    CAS  PubMed  Google Scholar 

  10. Esterhai JL, Brighton CT, Heppenstall RB et al. (1986) Nonunion of the humerus: Clinical, roentgenographic, scintigraphic and response characteristics to treatment with constant direct current simulation of osteogenesis. Clin Orthop 211: 228–234

    PubMed  Google Scholar 

  11. Foster RJ, Dixon GL, Bach AW et al. (1985) Internal fixation of fractures an nonunions of the humeral shaft. J Bone Joint Surg Am 67: 857–864

    CAS  PubMed  Google Scholar 

  12. Friedlaender GE, Perry CR, Cole JD et al. (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am (Suppl 1) 83: S151–S158

    Google Scholar 

  13. Gelberman RH, Menon J (1980) The vascularity of the scaphoid bone. J Hand Surg Am 5: 508–513

    CAS  PubMed  Google Scholar 

  14. Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7. The UK perspective. Injury (Suppl 3) 36: S47–S50

  15. Hayda RA, Brighton CT, Esterhai JL (1998) Pathophysiology of delayed healing. Clin Orthop (Suppl) 355: 31–40

    Google Scholar 

  16. Healy WL, White GM, Mick CA et al. (1987) Nonunion of the humeral shaft. Clin Orthop 219: 206–213

    PubMed  Google Scholar 

  17. Henle P, Zimmermann G, Weiss S (2005) Matrix metalloproteinases and failed fracture healing. Bone 37: 791–798

    Article  CAS  PubMed  Google Scholar 

  18. Hukkanen M, Konttinen YT, Santavirta A et al. (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54: 969–979

    Article  CAS  PubMed  Google Scholar 

  19. Kwiatkowski TC, Hanley JEN, Ramp WK (1996) Cigarette smoking and its orthopaedic consequences. Am J Orthop 25: 590–596

    CAS  PubMed  Google Scholar 

  20. Larson RL, Sukkivan CR, Janes JM (1961) Trauma surgery and the circulation of the talus: What are the risks of avascular necrosis? J Trauma 1: 13–21

    Article  Google Scholar 

  21. Littenberg B, Weinstein LP, McCarren M et al. (1998) Closed fractures of the tibial shaft. A meta-analysis of three methods of treatment. J Bone Joint Surg Am 80: 174–183

    CAS  PubMed  Google Scholar 

  22. Macey LR, Kana SM, Jingushi S et al. (1989) Defects of early fracture healing in experimental diabetes. J Bone Joint Surg Am 71: 722–733

    CAS  PubMed  Google Scholar 

  23. Nelson GE, Kelly PJ, Peterson F et al. (1960) Blood supply of the human tibia. J Bone Joint Surg Am 42: 625–635

    PubMed  Google Scholar 

  24. Oestern HJ (1997) Die gesundheitspolitische Bedeutung der Unfallchirurgie in Deutschland und Ihre Auswirkung auf Gesellschaft und Wirtschaft. In: Oestern HJ, Probst J (Hrsg) Unfallchirurgie in Deutschland. Springer, Berlin Heidelberg New York Tokio, S 63–79

  25. Rothman RH, Klemek JS, Toton JJ (1971) The effect of iron deficiency anaemia on fracture healing. Clin Orthop 77: 276–283

    CAS  PubMed  Google Scholar 

  26. Spector JA, Mehrara BJ, Greenwald JA et al. (2000) Osteoblast expression of vascular endothelial growth factor is modulated by the extracellular mircroenvirement. Am J Physiol Cell Physiol 280: 72–80

    Google Scholar 

  27. Sprague S, Bhandari M (2002) An economic evaluation of early versus delayed operative treatment in patients with closed tibial shaft fractures. Arch Orthop Trauma Surg 122: 315–323

    PubMed  Google Scholar 

  28. Stinchfield FE, Sankaran B, Samilson R (1956) The effect of anticoagulant therapy on bone repair. J Bone Joint Surg Am 38: 270–282

    PubMed  Google Scholar 

  29. Tonnensen PA, Heerfordt J, Pers M (1975) 150 open fractures of the tibial shaft: The relation between necrosis of the skin and delayed union. Acta Orthop Scand 46: 823–835

    Article  Google Scholar 

  30. Uhthoff HK, Rahn BA (1981) Healing patterns of metaphyseal fractures. Clin Orthop 160: 295–303

    PubMed  Google Scholar 

  31. Walsh WR, Sherman P, Howlett CR et al. (1997) Fracture healing in the rat osteopenia model. Clin Orthop 342: 218–227

    PubMed  Google Scholar 

  32. Watson-Jones R (1955) Fractures and joint injuries. Churchill Livingstone, Edinburgh

  33. Weiss S, Zimmermann G, Baumgart R et al. (2005) Systemic regulation of angiogenesis and matrix degradation in bone regeneration–distraction osteogenesis compared to rigid fracture healing. Bone 37: 781–790

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann G, Henle P, Kusswetter M et al. (2005) TGF-β1 as a marker of delayed fracture healing. Bone 36: 779–785

    Article  CAS  PubMed  Google Scholar 

  35. Zimmermann G, Moghaddam A, Wagner C et al. (2006) Clinical experience with bone morphogenetic protein 7 (BMP 7) in nonunions of long bones. Unfallchirurg 109: 528–537

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, G., Müller, U., Löffler, C. et al. Therapieerfolg bei atrophen Tibiaschaftpseudarthrosen. Unfallchirurg 110, 931–938 (2007). https://doi.org/10.1007/s00113-007-1347-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-007-1347-y

Schlüsselwörter

Keywords

Navigation