Skip to main content
Log in

Klinische Ganganalyse

Clinical gait analysis

  • Leitthema
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Die klinische Ganganalyse verfügt heute über ein gut definiertes Repertoire von unterschiedlich aufwendigen validen und reliablen Untersuchungstechniken, die allesamt durch die rasante Rechner- und Softwareentwicklung rascher auswertbar und somit auch für den gezielten klinischen Gebrauch besser handhabbar sind. Die Fragestellung der Untersuchung definiert den Einsatz der jeweiligen Methoden. Die klinische Ganganalyse kann uns als diagnostisches Instrument Einblicke in die Pathobiomechanik bzw. Pathophysiologie komplexer Gangstörungen geben, deren Verständnis Voraussetzung für die funktionsgerechte Therapiewahl ist. Bei Fragen des Funktionsscreenings nach rekonstruktiven Eingriffen im Sinne der Qualitätskontrolle, zur Festlegung eines Schweregrades einer Funktionsstörung, zum objektiven Vergleich konkurrierender therapeutischer Verfahren, zur Überprüfung eines Rehabilitationserfolges, aber auch zur quantitativen Überprüfung des Effekts von Orthesen, Einlagen und Schuhwerk können einfache ganganalytische Untersuchungen mit standardisiertem Parametersatz für Aussagen genügen, für die kein weiteres klinisches Diagnostikverfahren zur Verfügung steht und die sich in ein klinisches Gesamtkonzept einfügen.

Abstract

Clinical gait analysis comprises a well defined repertoire of various methods for valid and reliable assessment. The rapid development of corresponding hardware and software has substantially decreased the efforts necessary for data processing and has promoted the clinical applicability of the procedures. The clinical question defines the amount of methodological input. Clinical gait analysis may provide diagnostic insight into the pathobiomechanics and the pathophysiology of complex gait disorders for which a profound understanding of the underlying causes is a prerequisite for adequate treatment. The methods may help in the screening of gait function following reconstructive surgery as a measure of quality control, the assessment of the severity of a gait disturbance, the evaluation of a rehabilitation process, or the quantification of the effect of orthoses, insoles or specific shoe ware. Simple procedures of gait analysis may suffice to obtain information on gait function which can not be derived by mere clinical observation and which can be incorporated into a clinical concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a
Abb. 3
Abb. 4a
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9a
Abb. 10a
Abb. 11
Abb. 12a
Abb. 13

Literatur

  1. Alexander IJ, Chao EYS, Johnson KA (1990) The assessment of dynamic foot to ground contact forces and plantar pressure distribution: a review of the evolution of current techniques and clinical applications. Foot Ankle Int 11: 152–167

    Google Scholar 

  2. Banks SA, Fregly BJ, Boniforti F, Reinschmidt C, Romagnoli S (2005) Comparing in vivo kinematics of unicondylar and bi-unicondylar knee replacements. Knee Surg Sports Traumatol Arthrosc 20: S0942–2056

    Google Scholar 

  3. Bauer G, Zenkl M, Schierle M, Rosenbaum D, Mutschler W, Claes L (1993) Störung der Gangfunktion nach Metatarsale-5-Basisfrakturen. Unfallchirurg 96: 483–487

    PubMed  Google Scholar 

  4. Becker HP, Rosenbaum D, Zeithammel G, Gerngross H, Claes L (1994) Gait analysis after ankle ligament reconstruction (modified Evans procedure). Foot Ankle Int 15: 477–482

    PubMed  Google Scholar 

  5. Becker H-P, Rosenbaum D, Kriese T, Gerngroß H, Claes L (1995) Gait asymmetry following successful surgical treatment of ankle fractures in young adults. Clin Orthop 311: 262–269

    PubMed  Google Scholar 

  6. Becker H-P, Rosenbaum D, Zeithammel G, Gnann R, Gerngroß H, Claes L (1996) Comparison of ankle ligament reconstruction principles: Tenodesis versus anatomical repair. Clin Orthop 325: 194–202

    Article  PubMed  Google Scholar 

  7. Becker HP, Rosenbaum D, Claes L, Gerngroß H (1997) Dynamische Pedographie zur Abklärung der funktionellen Sprunggelenkinstabilität. Unfallchirurg 100: 133–39

    Article  PubMed  Google Scholar 

  8. Bergmann G, Graichen F, Rohlmann A (1993) Hip joint loading during walking and running measured in two patients. J Biomech 26: 969–990

    PubMed  Google Scholar 

  9. Brand RA (1987) Can biomechanics contribute to clinical orthopaedic assessments? J Biomech 9: 453–457

    Google Scholar 

  10. Cavanagh PR, Simoneau GG, Ulbrecht JS (1993) Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. J Biomech 26: 23–40

    Article  PubMed  Google Scholar 

  11. Cavanagh PR, Dingwell JB (2000) Gait analysis: kinematic and kinetic studies of the foot and ankle. In: Myerson MS (ed) Foot and ankle disorders. WB Saunders, Philadelphia London Toronto Sydney, vol 1, p 50–82

  12. Chau T (2001) A review of analytical techniques for gait data: Part 1: Fuzzy, statistical and fractal methods. Gait Posture 13: 49–66

    Article  PubMed  Google Scholar 

  13. Chau T (2001) A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. Gait Posture 13: 102–120

    Article  PubMed  Google Scholar 

  14. Chao EYS (1987) Gait analysis: a survey. In: Bergmann G, Kölbel R, Rohlmann A (eds) Biomechanics: basic and applied research. Nijhoff, Dordrecht Boston Lancaster, p 33–50

  15. Crenshaw SJ, Pollo FE, Brodsky JW (2004) The effect of ankle position on plantar pressure in a short walking boot. Foot Ankle Int 25: 69–72

    PubMed  Google Scholar 

  16. Davies MB, Betts RP, Scott IR (2003) Optical plantar pressure analysis following internal fixation for displaced intra-articular os calcis fractures. Foot Ankle Int 24: 851–856.

    PubMed  Google Scholar 

  17. Debrunner HU, Jacob HAC (1998) Biomechanik des Fußes. In Grifka J (Hrsg) Bücherei des Orthopäden, Bd 49, 2. Aufl. F. Enke, Stuttgart

  18. Dhalla R, Johnson JE, Engsberg J (2003) Can the use of a terminal device augment plantar pressure reduction with a total contact cast? Foot Ankle Int 24: 500–505

    PubMed  Google Scholar 

  19. Dennis DA, Mahfouz MR, Komistek RD, Hoff W (2005) In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics. J Biomech 38: 24–253

    Article  Google Scholar 

  20. Denoth J(1987) Analyse von Belastung und Beanspruchung des Bewegungsapparats. Swiss Med 9: 35–41

    Google Scholar 

  21. Döderlein L, Wolf S (2004) Der Stellenwert der instrumentellen Ganganalyse bei der infantilen Zerebralparese. Orthopäde 33: 1103–1118

    Google Scholar 

  22. Dubois D, Revuelta N, Blatt J-L, Maynou C, Migaud H, Thevenon A (2001) Analyse tridimensionelle de la marche après arthrodèse sous astragalienne unilatérale. Rev Chir Orthop 87: 685–695

    PubMed  Google Scholar 

  23. Eils E, Nolte S, Tewes M, Thorwesten L, Volker K, Rosenbaum D (2002) Modified pressure distribution patterns in walking following reduction of plantar sensation. J Biomech 35(10): 1307–1333

    Article  PubMed  Google Scholar 

  24. Eils E, Behrens S, Mers O, Thorwesten L, Volker K, Rosenbaum D (2004) Reduced plantar sensation causes a cautious walking pattern. Gait Posture 20: 54–60

    Article  PubMed  Google Scholar 

  25. Han TR, Chung SG, Shin HI (2003) Gait patterns of transtibial amputee patients walking indoors barefoot. Am J Phys Med Rehabil 82: 96–100

    Article  PubMed  Google Scholar 

  26. Hatze H (1986) Methoden biomechanischer Bewegungsanalyse. Österreichischer Bundesverlag, Wien

  27. Hennig EM, Milani TL(1993) Die Dreipunktunterstützung des Fußes. Z Orthop 131: 279–284

    PubMed  Google Scholar 

  28. Hillmann A, Rosenbaum D, Schroter J, Gosheger G, Hoffmann C, Winkelmann W (2000) Electromyographic and gait analysis of forty-three patiens after rotationplasty. J Bone Joint Surg 82-A: 187–96

    Google Scholar 

  29. Hillmann A, Rosenbaum D, Winkelmann W (2000) Plantar and dorsal foot loading measurements in patients after rotationplasty. Clin Biomech 15: 359–364

    Article  Google Scholar 

  30. Hof AL (2000) On the interpretation of the support moment. Gait Posture 12: 196–199

    Article  PubMed  Google Scholar 

  31. Kanesaku K, Banks SA, Honjo S, Nakata O, Kato H (2004) Fluoroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling. J Arthroplasty 19: 998–1003

    Article  PubMed  Google Scholar 

  32. Kinner BJ, Best R, Falk K, Thon K-P (2002) Is there a reliable outcome measurement for displaced intra-articular calcaneal fractures? J Trauma 53: 1094–1102

    PubMed  Google Scholar 

  33. Kitaoka HB, Schaap EJ, Chao EYS, An K-N (1994) Displaced intra-articular fractures of the calcaneus treated non-operatively. J Bone Joint Surg 76-A: 1531–1540

    Google Scholar 

  34. Komistek RD, Dennis DA, Mahfouz M (2003) In vivo fluoroscopic analysis of the normal human knee. Clin Orthop 410: 69–81

    PubMed  Google Scholar 

  35. Komistek RD, Kane TR, Mahfouz M, Ochoa JA, Dennis DA (2005) Knee mechanics: a review of past and present techniques to determine in vivo loads. J Biomech 38: 215–228

    Article  PubMed  Google Scholar 

  36. Kwon O-Y, Minor SD, Maluf SK, Mueller MJ (2003) Comparison of muscle activity during walking in subjects with and without diabetic neuropathy. Gait Posture 18: 105–113

    Article  PubMed  Google Scholar 

  37. Lange B, Chipchase L, Evans A (2004) The effect of low-dye taping on plantar pressures, during gait, in subjects with navicular drop exceeding 10 mm. J Orthop Sports Phys Ther 34: 201–209

    PubMed  Google Scholar 

  38. Maluf KS, Mueller MJ (2003) Comparison of physical activity and cumulative plantar tissue stress among subjects with and without diabetes mellitus and a history of recurrent plantar ulcers. Clin Biomech 18: 567–575

    Article  Google Scholar 

  39. McPoil TG, Cornwall MW, Yamada W (1995) A comparison of two in-shoe plantar pressure measurement systems. The lower extremity 2: 95–103

    Google Scholar 

  40. Mittlmeier Th, Morlock M (1991) Belastungsmessungen am posttraumatischen Fuß. Orthopäde 20: 22–32

  41. Mittlmeier Th, Morlock MM, Hertlein H, Fäßler M, Mutschler W, Bauer G (1994) Analysis of morphology and gait function following intraarticular calcaneal fracture. J Orthop Trauma 7: 303–310

    Google Scholar 

  42. Mittlmeier Th, Morlock MM, Kollmitzer J, Zwick-E-B, Lob GC (1996) Efficiency of gait measurement after complex foot trauma. Foot Ankle Surg 2: 197–208

    Article  Google Scholar 

  43. Mittlmeier Th, Weiler A, Söhn T, Kleinhans L, Mollbach S, Duda G, Südkamp NP (1999) Functional monitoring during rehabilitation following anterior cruciate ligament reconstruction. Clin Biomech 14: 576–584

    Article  Google Scholar 

  44. Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37: 121–126

    Article  PubMed  Google Scholar 

  45. Nurse MA, Nigg BM (2001) The effect of changes in foot sensation on plantar pressure and muscle activity. Clin Biomech 16: 719–727

    Article  Google Scholar 

  46. Perttunen JR, Antilla E, Södergård J, Merikanto J, Komi PV (2004) Gait asymmetry in patients with limb length discrepancy. Scand J Med Sci Sports 14: 49–56

    Article  PubMed  Google Scholar 

  47. Perry JE, Hall JO, Davis BL (2002) Simultaneous measurement of plantar pressure and shear forces in diabetic individuals. Gait Posture 15: 101–107

    Article  PubMed  Google Scholar 

  48. Prodromos CC, Andriacchi TP, Galante JO (1985) Relationship between knee joint loads and clinical changes following high tibial osteotomy. J Bone Joint Surg 67-A: 1188–1194

    Google Scholar 

  49. Rammelt S, Grass R, Zawadski T, Biewener A, Zwipp H (2004) Foot function after subtalar distraction bone-block arthrodesis. J Bone Joint Surg 86-B: 659–668

    Google Scholar 

  50. Ramseier LE, Jacob HAC, Exner GU (2004) Foot function after ray resection for malignant tumors of the phalanges and metatarsals. Foot Ankle Int 25: 53–58

    PubMed  Google Scholar 

  51. Reinschmidt C, van den Bogert AJ, Nigg BM, Lundberg A, Murphy N (1997) Effect of skin movement on the analysis of skeletal knee joint motion during running. J Biomech 30: 729–732

    Article  PubMed  Google Scholar 

  52. Rosenbaum D, Lübke B, Bauer G, Claes L (1995) Long-term effects of hindfoot fractures evaluated by means of plantar pressure analyses. Clin Biomech 10: 345–351

    Article  Google Scholar 

  53. Rosenbaum D, Bauer G, Augat P, Claes L (1996) Calcaneal fractures cause a lateral load shift in Chopart joint contact stress and plantar pressure pattern in vitro. J Biomech 29: 1435–1443

    Article  PubMed  Google Scholar 

  54. Rosenbaum D, Bertsch C, Claes LE (1997) NOVEL Award 1996: 2nd prize. Tenodeses do not fully restore ankle joint loading characteristics: a biomechanical in vitro investigation in the hind foot. Clin Biomech 12: 202–209

    Article  Google Scholar 

  55. Rosenbaum D, Becker H-P (1997) Plantar pressure distribution measurements. Technical background and clinical applications. Foot Ankle Surg 3: 1-14

    Article  Google Scholar 

  56. Rosenbaum D, Becker HP, Sterk J, Gerngroß H, Claes L (1997) Functional evaluation of the 10-year outcome after modified Evans repair for chronic ankle instability. Foot Ankle Int 18: 765–771

    PubMed  Google Scholar 

  57. Rosenbaum D, Becker HP, Wilke HJ, Claes LE (1998) Tenodeses destroy the kinematic coupling of the ankle joint complex. A three-dimensional in vitro analysis of joint movement. J Bone Joint Surg 80-B: 162–168

    Google Scholar 

  58. Rosenbaum D, Engelhardt M, Becker HP, Claes L, Gerngroß H (1999) Clinical and functional outcome after anatomic and nonanatomic ankle ligament reconstruction: Evans tenodesis versus periosteal flap. Foot Ankle Int 20: 636–639

    PubMed  Google Scholar 

  59. Russo SJ, Chipchase LS (2001) The effect of low-dye taping on peak plantar pressures of normal feet during gait. Aust J Physiother 47: 239–244

    PubMed  Google Scholar 

  60. Sacco ICN, Amadio AC (2000) A study of biomechanical parameters in gait analysis and sensitive cronaxie of diabetic neuropathic patients. Clin Biomech 15: 196–202

    Article  Google Scholar 

  61. Schmidt R, Meyer-Wölbert B, Röderer M, Becker HP, Benesch S, Fels T, Gerngroß H (1996) Dynamische Ganganalyse. Mittel zur Qualitätssicherung nach operativ versorgten Sprunggelenkfrakturen. Unfallchirurg 102: 110–114

    Article  Google Scholar 

  62. Selen HAM, Anemaat S, Janssen HMH, Deckers JHM (2003) Effects of prosthesis alignment on pressure distribution at the stump/socket interface in transtibial amputees during unsupported stance and gait. Clin Rehab 17: 787–796

    Article  Google Scholar 

  63. Stacoff A, Reinschmidt C, Nigg BM, van den Bogert AJ, Lundberg A, Denoth J, Stüssi E (2000) Effects of foot orthoses on skeletal motion during running. Clin Biomech 15: 54–64

    Article  Google Scholar 

  64. Stüssi E (1987) Was heisst Ganganalyse? Swiss Med 9: 8–13

    Google Scholar 

  65. Sutherland DH (2001) The evolution of clinical gait analysis part I: kinesiological EMG. Gait Posture 14: 61–70

    PubMed  Google Scholar 

  66. Vasarhelyi A, Baumert T, Fritsch C. Hopfenmüller W, Gradl G, Mittlmeier T (2005) Partial weight bearing after surgery for fracture of the lower extremity — is it achievable? Gait Posture 21: im Druck

    Google Scholar 

  67. Weijers RE, Walenkamp GHIM, van Marneren H, Kessels AGH (2003) The relationship of the position of the metatarsal heads and peak plantar pressure. Foot Ankle Int 24: 349–353

    PubMed  Google Scholar 

  68. Wetz HH, Hafkemeyer U, Drerup B (2005) Einfluss des C-Leg-Kniegelenk-Passteiles der Fa. Otto Bock auf die Versorgungsqualität Oberschenkelamputierter. Eine klinisch-biomechanische Studie zur Eingrenzung von Indikationskriterien. Orthopäde 34: 298–319

  69. Winter DA (1980) Overall principle of lower limb support during stance phase of gait. J Biomech 13: 923–927

    Article  PubMed  Google Scholar 

  70. Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18: 1-10

    Article  Google Scholar 

  71. Zijlstra W (2004) Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol 92: 39–44

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mittlmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittlmeier, T., Rosenbaum, D. Klinische Ganganalyse. Unfallchirurg 108, 614–629 (2005). https://doi.org/10.1007/s00113-005-0978-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-005-0978-0

Schlüsselwörter

Keywords

Navigation