Skip to main content

Advertisement

Log in

Bohrmehl: Eine Quelle vitaler Zellen!

Erste Ergebnisse von humanen Proben

Reaming debris: a source of vital cells!

First results of human specimens

  • Originalien
  • Published:
Der Unfallchirurg Aims and scope Submit manuscript

Zusammenfassung

Bohrmehl fällt beim Aufbohren der Knochen im Rahmen einer Osteosynthese an. Bisher liegen jedoch nur widersprüchliche Informationen über seine Zusammensetzung vor. Allem voran bleibt zu klären, ob Bohrmehl noch vitale Zellen enthält. Ziel der vorliegenden Untersuchung war die praxisnahe Gewinnung von Zellen aus humanem Bohrmehl und ihre Charakterisierung. Dazu wurden 21 Bohrmehlproben elektronenmikroskopisch und in der Zellkultur untersucht.

Die gewonnenen Zellen wurden in osteogene, chondrogene und adipogene Differenzierungsmedien verbracht. Darüber hinaus wurden FACS-Analysen durchgeführt. Ultrastrukturell waren sowohl intakte als auch zerstörte Zellen nachweisbar. In der Zellkultur ließen sich aus allen Proben Zellen anzüchten. Diese konnten aufgrund ihrer Morphologie, ihres Differenzierungsverhaltens sowie ihres Antigenprofils als mesenchymale Stammzellen charakterisiert werden. Damit belegen die vorliegenden Befunde erstmals, dass humanes Bohrmehl eine Quelle vitaler Stammzellen ist, und eröffnen die Möglichkeit, Bohrmehl als Alternative zur Spongiosaplastik einzusetzen.

Abstract

Reaming debris is generated in the course of intramedullary reaming of long bones. Up to now there has been little information about the composition of reaming debris. Especially, it remains to be elucidated if reaming debris contains vital cells. The goal of the present vitro investigation has been the harvest of cells from human reaming debris and the subsequent characterization of the cells. 21 specimens of human reaming debris have been investigated. Each specimen has been divided into two parts. One part has been examined by means of transmission electron microscopy while the other part of each specimen has been transferred into culture dishes. The developing cell cultures were characterized by using FACS analysis and were incubated within osteogenic, adipogenic and chondrogenic differentiation media. The results of electron microscopy have revealed the presence of both, vital cells and massively altered cells. Cell growth occurred after initial plating of all specimens. The cells which were grown within the culture dishes could be characterized as mesenchymal stem cells on the basis of their morphology, differentiation capacity and antigen profile. Based upon these results reaming debris has to be regarded as a source of vital mesenchymal stem cells. It remains to be elucidated, if reaming debris can be used as an alternative to bone tissue grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a,b
Abb. 2a–d
Abb. 3a–h

Literatur

  1. Alison MR, Poulsom R, Forbes R, Wright NA (2002) An introduction to stem cells. J Pathol 197:419–423

    Article  PubMed  Google Scholar 

  2. Anglen JO, Blue, JM (1995) A comparison of reamed and unreamed nailing of the tibia. J Trauma 39: 351–355

    CAS  PubMed  Google Scholar 

  3. Arrington ED, Smith WJ, Chambers HG, Bucknell, Davino NA (1996) Complications of iliac crest bone graft harvesting. Clin Orthop Rel Res 329:300–309.

    Article  Google Scholar 

  4. Brisman DL (1996) The effect of speed, pressure, and time on bone temperature during the drilling of implant sites. Int J Oral Maxillofac Implants 11:35–37

    CAS  PubMed  Google Scholar 

  5. Clatworthy MG, Clark DI, Gray DH, Hardy AE (1998) Reamed versus unreamed femoral nails. A randomized prospective trial. J Bone Joint Surg 80B:485–489

    Article  Google Scholar 

  6. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98:7841–7845

    Article  CAS  PubMed  Google Scholar 

  7. Colter DC, Class R, Di Girolamo CM (2000) Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA 97: 3213–3218

    Article  CAS  PubMed  Google Scholar 

  8. Court-Brown CM, Will E, Christie J, McQueen MM (1996) Reamed or unreamed nailing for closed tibial fractures. A prospective study in Tscherne C1 fractures. J Bone Surg 78B:580–583

    Google Scholar 

  9. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology 28:875–884

    Article  CAS  PubMed  Google Scholar 

  10. Dütting A, Thomas W, Lorenz H, Holst A (1988) Komplikationen nach autologer Knochentransplantation am Entnahmeort. Z Orthp 126:44–47

    Google Scholar 

  11. Einhorn L (1998) Fracture Repair. Clin Orthop 355:353–360

    Article  Google Scholar 

  12. Finkemeier CG, Schmidt AH, Kyle RF, Templeman DC, Varecka TF (2000) A prospective, randomized study of intramedullary nails inserted with and without reaming for the treatment of open and closed fractures of the tibial shaft. J Orthop Trauma 14:187–193

    Article  CAS  PubMed  Google Scholar 

  13. Frölke JP (2001) Intramedullary reaming of long bones. Ponsen and Looijen, Wageningen

  14. Furlong AJ, Giannoudis PV, Smith RM (1997) Heterotopic ossification: a comparison between reamed and unreamed femoral nailing. Injury 28:9-14

    Article  CAS  PubMed  Google Scholar 

  15. Giannoudis PV, Furlong AJ, Macdonald DA, Smith RM (1997) Reamed against unreamed nailing of the femoral diaphysis: a retrospective study of healing time. Injury 28:15–18

    Article  CAS  PubMed  Google Scholar 

  16. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80

    Article  CAS  PubMed  Google Scholar 

  17. Hoegel F, Mueller C, Peter R, Pfister U, Suedkamp N (2004) Bone debris: dead matter or vital osteoblasts. J Trauma Inj Inf Crit Care 56:363–367

    Article  Google Scholar 

  18. Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH (2002) Isolation and characterisation of size sieved stem cells from human bone marrow. Stem cells 20:249–258

    Article  PubMed  Google Scholar 

  19. Jiang Y, Jahagirdar BN, Reinhardt RL et al. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Google Scholar 

  20. Leunig M, Hertel R (1996) Thermal necrosis after tibial reaming for intramedullary nail fixation. A report of three cases. J Bone joint Surg 78B:584–587

    Google Scholar 

  21. Lodie TA, Blickarz CE, Devarakonda TJ et al. (2002) Systematic analysis of reportedly distinct populations of multipotent bone marrow-derived stem cells reveals a lack of distinction. Tissue Engineering 8:739–751

    Article  CAS  PubMed  Google Scholar 

  22. Louisia S, Stromboni M, Meunier A, Sedel L, Petite H (1999) Human osteoblastic cells: apotential tool to assess the etiology of pathologic bone formation. J Bone Mineral Res 9:1847–1850

    Google Scholar 

  23. Nolan PC, Nicolas RM, Mulholland BJ, Mollan RAB, Wilson DJ (1992) Culture of human osteoblasts on demineralised human bone. Possible means of graft enhancement. J Bone Joint Surg Br 74:284–286

    CAS  PubMed  Google Scholar 

  24. Ochsner PE, Baumgart F, Kohler G (1998) Heat-induced segmental necrosis after reaming of one humeral and two tibial fractures with a narrow medullary canal. Injury 29 (Suppl):1–10

    Article  PubMed  Google Scholar 

  25. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  26. Probst S (1997) Cellular mechanisms of bone repair. J Invest Surg 10:77–86

    CAS  PubMed  Google Scholar 

  27. Reyes M, Verfaillie CM (2001) Characterisation of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci 938:231–235

    CAS  PubMed  Google Scholar 

  28. Schneider U (1998) Die autogene Knochenzelltransplantation. Orthopäde 27:143–146

    Google Scholar 

  29. Schnettler R, Alt V, Dingeldein E, PfefferleHJ, Kilian O, Meyer C, Heiss C, Wenisch S (2003) Bone ingrowth in bFGF-coated hydroxyapatite ceramic implants. Biomaterials 24:4603–4608

    Article  CAS  PubMed  Google Scholar 

  30. Shur I, Marom R, Lokiec F, Socher R, Benayahu D (2002) Identification of cultured progenitor cells from human marrow stroma. J Cell Biochem 87:51–57

    Article  CAS  PubMed  Google Scholar 

  31. Tornetta P 3 rd, Tiburzi D (2000) Reamed versus nonreamed anterograde femoral nailing. J Orthop Trauma 14:15–19

    Article  PubMed  Google Scholar 

  32. Zellin G (1998) Growth factors and bone regeneration. Implications of barrier membranes. Swed Dent J Suppl 129:7–65

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Trinkaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinkaus, K., Wenisch, S., Siemers, C. et al. Bohrmehl: Eine Quelle vitaler Zellen!. Unfallchirurg 108, 650–656 (2005). https://doi.org/10.1007/s00113-005-0960-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00113-005-0960-x

Schlüsselwörter

Keywords

Navigation