Skip to main content
Log in

Kognition: Einflüsse von Essen, Trinken und Bewegung

Cognition: influences of eating, drinking and exercise

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Entwicklung und Funktion des menschlichen Gehirns entfalten sich im Zusammenspiel zwischen dem vererbten Genotyp und zahlreichen anderen Umweltfaktoren wie der Ernährung. Die Gesamtzusammensetzung der Ernährung und eine angemessene Zufuhr kritischer Nährstoffe sind wichtig für das Wachstum und die Entwicklung des Gehirns. Darüber hinaus spielen die Ernährung und andere gesundheitsbezogene Aspekte wie Bewegung eine wichtige Rolle bei der Erhaltung und Optimierung der kognitiven Leistungsfähigkeit. Dieser Beitrag gibt einen Überblick über 1. die Bedeutung der Ernährung, insbesondere der kritischen Nährstoffe für die frühe Gehirnentwicklung, 2. die Ernährungsempfehlungen und kritischen Nährstoffe bei Säuglingen, Kindern und Jugendlichen sowie 3. aktuelle Studien zur Bedeutung von Trinken, Essen und Bewegung für die Kognition bei Kindern und Jugendlichen.

Abstract

The development and function of the human brain unfolds in the interplay between the inherited genotype and numerous other environmental factors, such as nutrition. The overall composition of the diet as well as an adequate intake of critical nutrients are important for the growth and development of the brain. In addition, nutrition and other health-related aspects such as exercise play an important role in maintaining and optimizing cognitive performance. This article gives a review of 1) the importance of nutrition and especially of critical nutrients for early brain development, 2) dietary recommendations and critical nutrients in infants, children and adolescents and 3) recent studies on the importance of drinking, eating, and exercise for cognition in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, Samuel F, Ma G, Geurts JM (2021) Nutritional support of neurodevelopment and cognitive function in infants and young children-an update and novel insights. Nutrients 13(1):199. https://doi.org/10.3390/nu13010199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tau G, Peterson B (2010) Normal development of brain circuits. Neuropsychopharmacology 35:147–168. https://doi.org/10.1038/npp.2009.115

    Article  PubMed  Google Scholar 

  3. Black MM, Walker SP, Fernald LCH et al (2017) Early childhood development coming of age: science through the life course. Lancet 389(10064):77–90

    Article  Google Scholar 

  4. Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72(4):267–284

    Article  Google Scholar 

  5. Schwarzenberg SJ, Georgieff MK, Committee on Nutrition (2018) Advocacy for improving nutrition in the first 1000 days to support childhood development and adult health. Pediatrics 141(2):e20173716. https://doi.org/10.1542/peds.2017-3716

    Article  PubMed  Google Scholar 

  6. Moody L, Chen H, Pan YX (2017) Early-life nutritional programming of cognition-the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv Nutr 8(2):337–350. https://doi.org/10.3945/an.116.014209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pettersson E, Larsson H, D’Onofrio B, Almqvist C, Lichtenstein P (2019) Association of fetal growth with general and specific mental health conditions. JAMA Psychiatry 76(5):536–543. https://doi.org/10.1001/jamapsychiatry.2018.4342

    Article  PubMed  PubMed Central  Google Scholar 

  8. Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 27(1237):35–43. https://doi.org/10.1016/j.brainres.2008.08.078

    Article  CAS  Google Scholar 

  9. Neuringer M, Connor WE, Lin DS, Barstad L, Luck S (1986) Biochemical and functional effects of prenatal and postnatal omega 3 fatty acid deficiency on retina and brain in rhesus monkeys. Proc Natl Acad Sci USA 83(11):4021–4025. https://doi.org/10.1073/pnas.83.11.4021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tyagi E, Zhuang Y, Agrawal R, Ying Z, Gomez-Pinilla F (2015) Interactive actions of Bdnf methylation and cell metabolism for building neural resilience under the influence of diet. Neurobiol Dis 73:307–318. https://doi.org/10.1016/j.nbd.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  11. Jasani B, Simmer K, Patole SK, Rao SC (2017) Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 3:CD376. https://doi.org/10.1002/14651858.CD000376.pub4

    Article  PubMed  Google Scholar 

  12. Kalhoff H, Mesch CM, Stimming M, Israel A, Spitzer C, Beganovic L, Perez RE, Koletzko B, Warschburger P, Kersting M, Libuda L (2020) Effects of LC-PUFA supply via complementary food on infant development—a food based intervention (RCT) embedded in a total diet concept. Eur J Clin Nutr 74:682–690

    Article  CAS  Google Scholar 

  13. Lozoff B, Beard J, Connor J, Barbara F, Georgieff M, Schallert T (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64(5):S34–S91. https://doi.org/10.1301/nr.2006.may.s34-s43

    Article  PubMed  Google Scholar 

  14. Tran PV, Kennedy BC, Lien YC, Simmons RA, Georgieff MK (2015) Fetal iron deficiency induces chromatin remodeling at the Bdnf locus in adult rat hippocampus. Am J Physiol Regul Integr Comp Physiol 308(4):R276–R282. https://doi.org/10.1152/ajpregu.00429.2014

    Article  CAS  PubMed  Google Scholar 

  15. Cusick SE, Georgieff MK (2012) Nutrient supplementation and neurodevelopment: timing is the key. Arch Pediatr Adolesc Med 166(5):481–482. https://doi.org/10.1001/archpediatrics.2012.199

    Article  PubMed  Google Scholar 

  16. Adamo AM, Oteiza PI (2010) Zinc deficiency and neurodevelopment: the case of neurons. Biofactors 36(2):117–124. https://doi.org/10.1002/biof.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pfaender S, Föhr K, Lutz AK, Putz S, Achberger K, Linta L, Liebau S, Boeckers TM, Grabrucker A (2016) Cellular zinc homeostasis contributes to neuronal differentiation in human induced pluripotent stem cells. Neural Plast. https://doi.org/10.1155/2016/3760702

    Article  PubMed  PubMed Central  Google Scholar 

  18. Black MM, Sazawal S, Black RE, Khosla S, Kumar J, Menon V (2004) Cognitive and motor development among small-for-gestational-age infants: impact of zinc supplementation, birth weight, and caregiving practices. Pediatrics 113(5):1297–1305. https://doi.org/10.1542/peds.113.5.1297

    Article  PubMed  Google Scholar 

  19. Colombo J, Zavaleta N, Kannass KN, Lazarte F, Albornoz C, Kapa LL, Caulfield LE (2014) Zinc supplementation sustained normative neurodevelopment in a randomized, controlled trial of Peruvian infants aged 6–18 months. J Nutr 144(8):1298–1305. https://doi.org/10.3945/jn.113.189365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong J, Yin H, Liu W, Wang P, Jiang Y, Chen J (2005) Congenital iodine deficiency and hypothyroidism impair LTP and decrease C‑fos and C‑jun expression in rat hippocampus. Neurotoxicology 26(3):417–426. https://doi.org/10.1016/j.neuro.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  21. Navarro D, Alvarado M, Navarrete F, Giner M, Obregon MJ, Manzanares J, Berbel P (2015) Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats. Front Neuroanat 9:9. https://doi.org/10.3389/fnana.2015.00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Berbel P, Mestre JL, Santamaría A, Palazón I, Franco A, Graells M, González-Torga A, de Escobar GM (2009) Delayed neurobehavioral development in children born to pregnant women with mild hypothyroxinemia during the first month of gestation: the importance of early iodine supplementation. Thyroid 19(5):511–519. https://doi.org/10.1089/thy.2008.0341

    Article  CAS  PubMed  Google Scholar 

  23. Skeaff SA (2011) Iodine deficiency in pregnancy: the effect on neurodevelopment in the child. Nutrients 3(2):265–273. https://doi.org/10.3390/nu3020265

    Article  PubMed  PubMed Central  Google Scholar 

  24. Morris SS, Cogill B, Uauy R, Maternal and Child Undernutrition Study Group (2008) Effective international action against undernutrition: why has it proven so difficult and what can be done to accelerate progress? Lancet 371(9612):608–621. https://doi.org/10.1016/S0140-6736(07)61695-X

    Article  PubMed  Google Scholar 

  25. Ernährungskommission der Deutschen Gesellschaft für Kinder- und Jugendmedizin (DGKJ) (2014) Empfehlungen der Ernährungskommission der Deutschen Gesellschaft für Kinder- und Jugendmedizin. Monatsschr Kinderheilkd 162:527–538

    Article  Google Scholar 

  26. Kersting M, Kalhoff H, Voss S, Jansen K, Lücke T (2021) Empfehlungen für die Säuglingsernährung in Deutschland – der aktualisierte Ernährungsplan für das 1. Lebensjahr. Ernahr Umsch 68(6):110–116

    Google Scholar 

  27. Kersting M, Kalhoff H, Voss S, Jansen K, Lücke T (2021) Translating European child nutrition guidelines into practice—the German dietary scheme for the first year of life. J Pediatr Gastroenterol Nutr 71(4):550–556

    Article  Google Scholar 

  28. Kalhoff H, Kersting M (2017) Breastfeeding or formula feeding and iron status in the second 6 months of life: a critical role for complementary feeding. J Pediatr 187:333

    Article  Google Scholar 

  29. EFSA Panel on Nutrition, Novel Foods and Food Allergens, Castenmiller J, de Henauw S, Hirsch-Ernst K et al (2019) Scientific opinion on the appropriate age range for introduction of complementary feeding into an infant’s diet. EFSA J 17(9):5780–6021

    Google Scholar 

  30. Libuda L, Hilbig A, Berber-Al-Tawil S, Kalhoff H, Kersting M (2018) Association between full breastfeeding, timing of complementary food introduction, and iron status in infancy in Germany: results of a secondary analysis of a randomized trial. Eur J Nutr 57(2):523–531

    Article  CAS  Google Scholar 

  31. Johner SA, Thamm M, Nöthlings U, Remer T (2013) Iodine status in preschool children and evaluation of major dietary iodine sources: a German experience. Eur J Nutr 52(7):1711–1719

    Article  CAS  Google Scholar 

  32. Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet 372(9645):1251–1262

    Article  CAS  Google Scholar 

  33. Remer T, Johner SA, Gärtner R et al (2010) Iodine deficiency in infancy a risk for cognitive development. Dtsch Med Wochenschr 135(31):1551–5617

    Article  CAS  Google Scholar 

  34. EFSA NDA Panel (2013) Scientific opinion on nutrient requirements and dietary intakes of infants and young children in the European Union. EFSA J 11(10):3408–3511

    Google Scholar 

  35. Kalhoff H, Sinningen K, Lücke T, Kersting M (2022) Jod bleibt ein kritischer Nährstoff in der Kinderernährung! pädprax 98/2 (im Druck)

  36. Green R, Allen LH, Bjørke-Monsen AL, Brito A, Guéant JL, Miller JW, Molloy AM, Nexo E, Stabler S, Toh BH, Ueland PM, Yajnik C (2017) Vitamin B12 deficiency. Nat Rev Dis Primers 3:17040

    Article  Google Scholar 

  37. Lücke T, Korenke GC, Poggenburg I et al (2007) Mütterlicher Vitamin-B12-Mangel: Ursache neurologischer Symptomatik im Säuglingsalter. Z Geburtshilfe Neonatol 211:157–161

    Article  Google Scholar 

  38. Kersting M, Kalhoff H, Melter M, Lücke T (2018) Vegetarische Kostformen in der Kinderernährung? Eine Bewertung aus Pädiatrie und Ernährungswissenschaft. Dtsch Med Wochenschr 143(04):279–286

    Article  Google Scholar 

  39. Kalhoff H, Lücke T, Kersting M (2019) Praktische Beratung und Betreuung bei vegetarischer Kinderernährung. Monatsschr Kinderheilkd 167:803–812

    Article  Google Scholar 

  40. Kersting M, Kalhoff H, Lücke T (2017) Von Nährstoffen zu Lebensmitteln und Mahlzeiten: Das Konzept der Optimierten Mischkost für Kinder und Jugendliche in Deutschland. Aktuel Ernahrungsmed 42:304–315

    Article  Google Scholar 

  41. Cooper SB, Bandelow S, Nute ML, Morris JG, Nevill ME (2012) Breakfast glycaemic index and cognitive function in adolescent school children. Br J Nutr 107:1823–1832

    Article  CAS  Google Scholar 

  42. Mahoney CR, Taylor HA, Kanarek RB, Samuel P (2005) Effect of breakfast composition on cognitive processes in elementary school children. Physiol Behav 85:635–645

    Article  CAS  Google Scholar 

  43. Smith MA, Foster JK (2008) The impact of a high versus a low glycaemic index breakfast cereal meal on verbal episodic memory in healthy adolescents. Nutr Neurosci 11:219–227

    Article  CAS  Google Scholar 

  44. Schröder M, Müller K, Falkenstein M et al (2016) Lunch at school and children’s cognitive functioning in the early afternoon: results from the cognition intervention study Dortmund continued (coco). Br J Nutr 116(7):1298–1305

    Article  Google Scholar 

  45. Schröder M, Müller K, Falkenstein M, Stehle P, Kersting M, Libuda L (2015) Short-term effects of lunch on children’s executive cognitive functioning: the randomized crossover cognition intervention study Dortmund PLUS (Cognido PLUS). Physiol Behav 152:307–314

    Article  Google Scholar 

  46. Jansen K, Tempes J, Drozdowska A, Gutmann M, Falkenstein M, Buyken AE, Libuda L, Rudolf H, Lücke T, Kersting M (2020) Short-term effects of carbohydrates differing in glycemic index (GI) consumed at lunch on children’s cognitive function in a randomized crossover study. Eur J Clin Nutr 74(5):757–764. https://doi.org/10.1038/s41430-020-0600-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drozdowska A, Sinningen K, Falkenstein M, Rudolf H, Libuda L, Buyken AE, Lücke T, Kersting M (2021) Impact of lunch with carbohydrates differing in glycemic index on children’s cognitive functioning in the late postprandial phase: a randomized crossover study. Eur J Nutr. https://doi.org/10.1007/s00394-021-02766-y

    Article  PubMed  PubMed Central  Google Scholar 

  48. Drozdowska A, Falkenstein M, Jendrusch G, Platen P, Luecke T, Kersting M, Jansen K (2020) Water consumption during a school day and children’s short-term cognitive performance: the CogniDROP randomized intervention trial. Nutrients 12(5):1297. https://doi.org/10.3390/nu12051297

    Article  PubMed Central  Google Scholar 

  49. Hanusch, Drozdowska A, Falkenstein M, Lücke T, Kersting M, Jansen K (2020) Zusammenhänge von Bewegungs- und Ernährungsverhalten mit kognitiven Fähigkeiten von Schulkindern unter Alltagsbedingungen. Pädiatr Prax 93:528–538

    Google Scholar 

  50. Drozdowska A, Falkenstein M, Jendrusch G, Platen P, Lücke T, Kersting M, Sinningen K (2021) Interrelations of physical fitness and cognitive functions in German schoolchildren. Children (Basel) 8(8):669. https://doi.org/10.3390/children8080669

    Article  Google Scholar 

  51. Kalhoff H, Hilbig A, Libuda L (2015) Trinken – was und wie viel? Kinder Jugendmed 15(1):7–12. https://doi.org/10.1055/s-0038-1629248

    Article  Google Scholar 

  52. Martin A, Booth JN, Laird Y et al (2018) Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009728.pub4

    Article  PubMed  PubMed Central  Google Scholar 

  53. Best JR (2010) Effects of physical activity on children’s executive function: contributions of experimental research on aerobic exercise. Dev Rev 30(4):331–551

    Article  Google Scholar 

  54. Ellen H, Rasmussen M, Samdal O, Iannotti R, Kelly C, Borraccino A, Vereecken C et al (2009) Overweight in school-aged children and its relationship with demographic and lifestyle factors: results from the WHO-collaborative health behaviour in school-aged children (HBSC) study. Int J Public Health 54:167–179. https://doi.org/10.1007/s00038-009-5408-6

    Article  Google Scholar 

  55. Drozdowska A, Jendrusch G, Platen P, Lücke T, Kersting M, Sinningen K (2022) Cross-sectional association between level of school sports and different cognitive parameters in schoolchildren, considering multiple covariates. Mind Brain Educ. https://doi.org/10.1111/mbe.12321

    Article  Google Scholar 

  56. Müller K, Libuda L, Gawehn N et al (2013) Effects of lunch on children’s short-term cognitive functioning: a randomized crossover study. Eur J Clin Nutr 67(2):185–189

    Article  Google Scholar 

  57. Voelcker-Rehage C, Niemann C (2013) Structural and functional brain changes related to different types of physical activity across the life span. Neurosci Biobehav Rev 37(9):2268–2295

    Article  Google Scholar 

  58. Bös K, Schlenker L (2011) Deutscher Motorik-Test 6–18 (DMT 6–18). In: Krüger M, Neuber N (Hrsg) Bildung im Sport: Beiträge zu einer zeitgemäßen Bildungsdebatte. Springer, Wiesbaden, Germany, S 337–355

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Kalhoff.

Ethics declarations

Interessenkonflikt

H. Kalhoff, K. Sinningen, A. Drozdowska, J. Berrang, M. Kersting und T. Lücke geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Dominik Schneider, Dortmund

Gesine Hansen, Hannover

Die Autoren Hermann Kalhoff und Kathrin Sinningen teilen sich die Erstautorenschaft.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalhoff, H., Sinningen, K., Drozdowska, A. et al. Kognition: Einflüsse von Essen, Trinken und Bewegung. Monatsschr Kinderheilkd 170, 704–715 (2022). https://doi.org/10.1007/s00112-022-01539-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-022-01539-z

Schlüsselwörter

Keywords

Navigation