Skip to main content

Präventionskonzepte in der Frühgeborenenmedizin

Prevention concepts in preterm children

Zusammenfassung

Präventionskonzepte in der Frühgeborenenmedizin setzen bereits im perinatalen Kontext an, um bestmögliche Ausgangsbedingungen zu schaffen. Die umfangreichste Studienlage für präventive Interventionen ergibt sich für den vulnerablen Zeitraum der Neonatalperiode. In der vorliegenden Übersichtsarbeit wird die aktuelle Evidenz zusammengefasst, und es werden die Aspekte, die durch interdisziplinäre Zusammenarbeit an verschiedenen Zeitpunkten der Entwicklung von (ehemaligen) Frühgeborenen positiv beeinflussbar sind, in den Vordergrund gestellt.

Abstract

Concepts of prevention for preterm children should already be implemented in the perinatal context in order to provide the best possible start in life. The most comprehensive studies on preventive measures are related to the vulnerable time of the neonatal period. This overview article summarizes the current evidence and focuses on those aspects that are modifiable by interdisciplinary collaboration at various times in the development of (former) preterm children.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. Singer D, Thiede LP, Perez A (2021) Adults born preterm-long-term health risks of former very low birth weight infants. Dtsch Arztebl Int 118(31–32):521–527

    PubMed  PubMed Central  Google Scholar 

  2. Bell EF, Hintz SR, Hansen NI, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network et al (2022) Mortality, in-hospital morbidity, care practices, and 2‑year outcomes for extremely preterm infants in the US, 2013–2018. JAMA 327(3):248–263. https://doi.org/10.1001/jama.2021.23580

    Article  PubMed  Google Scholar 

  3. Humberg A, Fortmann I, Siller B, German Neonatal Network, German Center for Lung Research and Priming Immunity at the beginning of life (PRIMAL) Consortium et al (2020) Preterm birth and sustained inflammation: consequences for the neonate. Semin Immunopathol 42(4):451–468. https://doi.org/10.1007/s00281-020-00803-2

    Article  PubMed  PubMed Central  Google Scholar 

  4. Crump C (2020) An overview of adult health outcomes after preterm birth. Early Hum Dev 150:105187. https://doi.org/10.1016/j.earlhumdev.2020.105187

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kotecha SJ, Edwards MO, Watkins WJ et al (2013) Effect of preterm birth on later FEV1: a systematic review and meta-analysis. Thorax 68(8):760–766. https://doi.org/10.1136/thoraxjnl-2012-203079

    Article  PubMed  Google Scholar 

  6. Faber T, Kumar A, Mackenbach JP et al (2017) Effect of tobacco control policies on perinatal and child health: a systematic review and meta-analysis. Lancet Public Health 2(9):e420–e437. https://doi.org/10.1016/S2468-2667(17)30144-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bérard A, Zhao JP, Sheehy O (2016) Success of smoking cessation interventions during pregnancy. Am J Obstet Gynecol 215(5):611.e1–611.e8

    Article  Google Scholar 

  8. Morgan AS, Mendonca M, Thiele N, David AL (2022) Management and outcomes of extreme preterm birth. BMJ 376:e55924

    Article  Google Scholar 

  9. AWMF (2020) Leitlinie 015–025 Prävention und Therapie der Frühgeburt (Version 1.1)

    Google Scholar 

  10. Hedermann G, Hedley PL, Bækvad-Hansen M et al (2021) Danish premature birth rates during the COVID-19 lockdown. Arch Dis Child Fetal Neonatal Ed 106(1):93–95

    Article  Google Scholar 

  11. Romero R, Conde-Agudelo A, Da Fonsesca E et al (2018) Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes in singleton gestations with a short cervix: a meta-analysis of individual patient data. Am J Obstet Gynecol 218(2):161–180

    CAS  Article  Google Scholar 

  12. Hoffman MK, Goudar SS, Kodkany BS, ASPIRIN Study Group et al (2020) Low-dose aspirin for the prevention of preterm delivery in nulliparous women with a singleton pregnancy (ASPIRIN): a randomised, double-blind, placebo-controlled trial. Lancet 395(10220):285–293

    CAS  Article  Google Scholar 

  13. Humberg A, Härtel C, Paul P, German Neonatal Network (GNN) et al (2017) Delivery mode and intraventricular hemorrhage risk in very-low-birth-weight infants: observational data of the German neonatal network. Eur J Obstet Gynecol Reprod Biol 212:144–149

    Article  Google Scholar 

  14. Boßung V, Lupatsii M, Dashdorj L et al (2022) Timing of antimicrobial prophylaxis for cesarean section is critical for gut microbiome development in term born infants. Gut Microbes 14(1):2038855

    Article  Google Scholar 

  15. Mehler K, Oberthuer A, Keller T et al (2016) Survival among infants born at 22 or 23 weeks’ gestation following active prenatal and postnatal care. JAMA Pediatr 170(7):671–677

    Article  Google Scholar 

  16. Mehler K, Hucklenbruch-Rother E, Trautmann-Villalba P et al (2020) Delivery room skin-to-skin contact for preterm infants—a randomized clinical trial. Acta Paediatr 109(3):518–526

    Article  Google Scholar 

  17. Thekkeveedu RK, El-Saie A, Prakash V et al (2022) Ventilation-induced lung injury (VILI) in neonates: evidence-based concepts and lung-protective strategies. J Clin Med 11(3):557. https://doi.org/10.3390/jcm11030557

    Article  Google Scholar 

  18. Barton SK, Tolcos M, Miller SL et al (2016) Ventilation-induced brain injury in preterm neonates: a review of potential therapies. Neonatology 110:155–162. https://doi.org/10.1159/000444918

    CAS  Article  PubMed  Google Scholar 

  19. Herting E, Härtel C, Göpel W (2019) Less invasive surfactant administration (LISA): chances and limitations. Arch Dis Child Fetal Neonatal Ed 104(6):F655–F659

    Article  Google Scholar 

  20. Abdel-Latif ME, Davis PG, Wheeler KE et al (2021) Surfactant therapy via thin catheter in preterm infants with or at risk of respiratory distress syndrome. Cochrane Database Syst Rev 5:CD11672. https://doi.org/10.1002/14651858.CD011672.pub2

    Article  PubMed  Google Scholar 

  21. Dargaville PA, Kamlin COF, Orsini F, OPTIMIST—A Trial Investigators et al (2021) Effect of minimally invasive surfactant therapy vs sham treatment on death or bronchopulmonary dysplasia in preterm infants with respiratory distress syndrome: the OPTIMIST—a randomized clinical trial. JAMA 326(24):2478–2487

    CAS  Article  Google Scholar 

  22. Álvarez-Fuente M, Moreno L, Mitchell JA et al (2019) Preventing bronchopulmonary dysplasia: new tools for an old challenge. Pediatr Res 85(4):432–441. https://doi.org/10.1038/s41390-018-0228-0

    Article  PubMed  Google Scholar 

  23. Maiwald CA, Niemarkt HJ, Poets CF, FiO2‑C Study Group et al (2019) Effects of closed-loop automatic control of the inspiratory fraction of oxygen (FiO 2‑C) on outcome of extremely preterm infants—study protocol of a randomized controlled parallel group multicenter trial for safety and efficacy. BMC Pediatr 19(1):363. https://doi.org/10.1186/s12887-019-1735-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Poets CF, Lorenz L (2018) Prevention of bronchopulmonary dysplasia in extremely low gestational age neonates: current evidence. Arch Dis Child Fetal Neonatal Ed 103(3):F285–F291

    Article  Google Scholar 

  25. Doyle LW, Cheong JL, Hay S et al (2021) Early (< 7 days) systemic postnatal corticosteroids for prevention of bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD001146.pub6

    Article  PubMed  Google Scholar 

  26. Pirr S, Härtel C, Viemann D (2021) Sepsis des Frühgeborenen. Monatsschr Kinderheilkd 169:1133–1140

    Article  Google Scholar 

  27. Härtel C, Spiegler J, Fortmann I et al (2020) Breastfeeding for 3 months or longer but not probiotics is associated with reduced risk for inatten-tion/ hyperactivity and conduct problems in very-low-birth-weight children at early primary school age. Nutrients 12(11):E3278. https://doi.org/10.3390/nu12113278

    Article  PubMed  Google Scholar 

  28. Wiechers C, Fusch C, Poets CF, Franz AR (2021) Ernährung von sehr unreifen Frühgeborenen. Monatsschr Kinderheilkd 169:1141. https://doi.org/10.1007/s00112-021-01330-6

    Article  Google Scholar 

  29. Henrick BM, Rodriguez L, Lakshmikanth T et al (2021) Bifidobacteria-mediated immune system imprinting early in life. Cell 184(15):3884–3898.e11

    CAS  Article  Google Scholar 

  30. Chi C, Li C, Buys N et al (2021) Effects of probiotics in preterm infants: a network meta-analysis. Pediatrics 147(1):e20200706. https://doi.org/10.1542/peds.2020-0706

    Article  PubMed  Google Scholar 

  31. Huning BM, Reimann M, Beerenberg U et al (2012) Establishment of a family-centred care programme with follow-up home visits: implications for clinical care and economic characteristics. Klin Padiatr 224(7):431

    CAS  Article  Google Scholar 

  32. Fortmann I, Dammann M‑T, Humberg A et al (2021) Five year follow up of extremely low gestational age infants after timely or delayed administration of routine vaccinations. Vaccines (Basel) 9(5):493. https://doi.org/10.3390/vaccines9050493

    Article  Google Scholar 

  33. Spiegler J, Ortfeld S, Herting E et al (2020) Frühförderung bei sehr kleinen Frühgeborenen in Deutschland. Monatsschr Kinderheilkd 168:580. https://doi.org/10.1007/s00112-018-0517-z

    Article  Google Scholar 

  34. Agrawal S, Rao SC, Bulsara MK, Patole SK (2018) Prevalence of autism spectrum disorder in preterm infants: a meta-analysis. Pediatrics 142(3):e20180134. https://doi.org/10.1542/peds.2018-0134

    Article  PubMed  Google Scholar 

  35. Twilhaar ES, Wade RM, de Kieviet JF et al (2018) Cognitive outcomes of children born extremely or very preterm since the 1990s and associated risk factors: a meta-analysis and meta-regression. JAMA Pediatr 172(4):361–367. https://doi.org/10.1001/jamapediatrics.2017.5323

    Article  PubMed  PubMed Central  Google Scholar 

  36. Geisler I, Rausch TK, Göpel W, Spiegler J (2021) Extremely and very preterm-born children 〈 1500 g show different weight development in childhood compared to their peers. Acta Paediatr 110:2093–2099. https://doi.org/10.1111/apa.15785

    Article  PubMed  Google Scholar 

  37. Kaseva N, Wehkalampi K, Hemiö K et al (2013) Diet and nutrient intake in young adults born preterm at very low birth weight. J Pediatr 163(1):43–48. https://doi.org/10.1016/j.jpeds.2012.12.076

    Article  PubMed  Google Scholar 

  38. Tikanmäki M, Tammelin T, Sipola-Leppänen M et al (2016) Physical fitness in young adults born preterm. Pediatrics. https://doi.org/10.1542/peds.2015-1289

    Article  PubMed  Google Scholar 

  39. Spiegler J, Mendonca M, Wolke D (2019) Prospective study of physical activity of preterm born children from age 5–14 years. J Pediatr 208:66–73.e7

    Article  Google Scholar 

  40. Göpel W, Müller M, Rabe H et al (2020) Genetic background of high blood pressure is associated with reduced mortality in premature neonates. Arch Dis Child Fetal Neonatal Ed 105:184–189

    Article  Google Scholar 

  41. Ellsbury DL, Clark RH, Ursprung R et al (2016) A multifaceted approach to improving outcomes in the NICU: the pediatrix 100 000 babies campaign. Pediatrics 137(4):e20150389

    Article  Google Scholar 

  42. King BC, Richardson T, Patel RM et al (2021) Prioritization framework for improving the value of care for very low birth weight and very preterm infants. J Perinatol 41(10):2463–2473

    Article  Google Scholar 

  43. Jasani B, Torgalkar R, Ye XY et al (2021) Association of umbilical cord management strategies with outcomes of preterm infants: a systematic review and network meta-analysis. JAMA Pediatr 175(4):e210102

    Article  Google Scholar 

  44. Kirpalani H, Bell EF, Hintz SR, Eunice Kennedy Shriver NICHD Neonatal Research Network et al (2020) Higher or lower haemoglobin transfusion thresholds for preterm infants. N Engl J Med 383(27):2639–2651

    CAS  Article  Google Scholar 

  45. Curley A, Stanworth SJ, Willoughby K, PlaNeT2 MATISSE Collaborators et al (2019) Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med 380(3):242–251

    CAS  Article  Google Scholar 

  46. van Veenendaal NR, Heideman WH, Limpens J et al (2019) Hospitalising preterm infants in single family rooms versus open bay units: a systematic review and meta-analysis. Lancet Child Adolesc Health 3(3):147–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Härtel.

Ethics declarations

Interessenkonflikt

C. Härtel, J. Spiegler, K. Hanke, E. Herting und W. Göpel geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den AutorInnen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Wieland Kiess, Leipzig

Fred Zepp, Mainz

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Härtel, C., Spiegler, J., Hanke, K. et al. Präventionskonzepte in der Frühgeborenenmedizin. Monatsschr Kinderheilkd 170, 520–529 (2022). https://doi.org/10.1007/s00112-022-01486-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-022-01486-9

Schlüsselwörter

  • Zeitfenster der Entwicklung
  • Entlassmanagement
  • Lungenschädigung
  • Mikrobiom
  • Langzeiteffekte

Keywords

  • Developmental windows of opportunity
  • Discharge planning
  • Lung injury
  • Microbiome
  • Long-term effects