Genetisch bedingte UV‑Empfindlichkeit

Fotokarzinogenität und Lichtschutz bei Kindern

Genetically caused UV sensitivity

Photocarcinogenesis and UV protection in children

Zusammenfassung

Hintergrund

Ultraviolette Strahlung kann DNA-Schäden hervorrufen, die, wenn sie nicht durch die Nukleotidexzisionsreparatur (NER) behoben werden, DNA-Mutationen verursachen und somit die Entwicklung von Hautkrebs auslösen können. Defekte im NER-System bilden die Ursache einer Reihe von seltenen genetischen Syndromen.

Fragestellung

Übersicht zum aktuellen Verständnis der Fotokarzinogenese und dazu, wie Defekte im NER-System das Hautkrebsrisiko erhöhen. Des Weiteren wird ein Überblick zu Diagnostik und Therapie des Xeroderma pigmentosum (XP) sowie zu UV-Schutzmaßnahmen gegeben.

Material und Methoden

Zusammenfassung der aktuellen Literatur zu Fotokarzinogenese, NER-Defekt-Syndromen und UV-Schutz.

Ergebnisse

Ein Energietransfer von UV-Strahlung auf DNA bewirkt die Bildung von Cyclobutanpyrimidindimeren (CPD) und Pyrimidin-Pyrimidon-Fotoprodukten (6-4-PP). Werden diese Läsionen nicht repariert, entstehen DNA-Mutationen, die die Krebsentwicklung befördern. Genetische Defekte im NER-System können zu verschiedenen seltenen meist autosomal-rezessiven genetischen Syndromen, wie dem Cockayne-Syndrom (CS), einer Trichothiodystrophie (TTD), dem zerebro-okulo-fazio-skeletalen Syndrom (COFS), dem UV-sensitiven Syndrom (UVSS) und dem XP führen. Die Syndrome sind abhängig vom betroffen Gen des NER-Systems und gehen mit erhöhter UV-Sensitivität, neurologischen Störungen und/oder erhöhtem Hautkrebsrisiko einher. Erste Hautveränderungen treten bei XP-Patienten bereits ab einem Alter von 3 bis 5 Jahren auf, und im Alter von 9 Jahren wird im Median erstmals nichtmelanozytärer Hautkrebs diagnostiziert.

Schlussfolgerungen

Schutzmaßnahmen sind für Patienten mit XP unverzichtbar. Das Beispiel der XP-Patienten zeigt im Zeitraffertempo, wie wichtig auch der UV-Schutz bei allen Kindern ist.

Abstract

Background

Exposure of skin to ultraviolet (UV) radiation can cause DNA damage. An intact nucleotide excision repair (NER) system usually prevents the formation of DNA mutations as a consequence of such lesions; however, defects in the NER system are the cause of a variety of rare genetic syndromes.

Objective

Overview of the current understanding of photocarcinogenesis and how defects in the NER system increase the risk of skin cancer. Furthermore, a brief review of the diagnostics and treatment of xeroderma pigmentosum (XP) as well as UV protection is provided.

Material and methods

A literature search was performed to summarize the current knowledge on photocarcinogenesis, NER defect syndromes and UV protection.

Results

Energy transfer from UV radiation to DNA leads to formation of cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6–4) photoproducts (6–4 PP). If not repaired by NER these DNA lesions are transformed into DNA mutations and drive carcinogenesis. Genetic defects in the NER system are the underlying cause of a variety of rare mostly autosomal recessive genetic syndromes, such as the Cockayne syndrome (CS), trichothiodystrophy (TTD), cerebrooculofacioskeletal (COFS) syndrome, UV-sensitive syndrome (UVSS), and XP depending on which NER gene is affected. These syndromes are associated with increased UV sensitivity, neurological disorders, and/or increased risk of skin cancer. The first skin changes in XP patients usually occur at the age of 3‑5 years and nonmelanoma skin cancer is first diagnosed at a median age of 9 years.

Conclusion

Strict UV protection is essential for patients with rare DNA repair defect syndromes, such as XP. The example of XP shows in time-lapse how important UV protection is for all children.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Alessi SS, Sanches JA, Roncalli de Oliveira W et al (2009) Treatment of cutaneous tumors with topical 5 % imiquimod cream. Clinics 64:961–966. https://doi.org/10.1590/s1807-59322009001000005

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Alexandrov LB, Kim J, Haradhvala NJ et al (2020) The repertoire of mutational signatures in human cancer. Nature 578:94–101. https://doi.org/10.1038/s41586-020-1943-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Anttinen A, Koulu L, Nikoskelainen E et al (2008) Neurological symptoms and natural course of xeroderma pigmentosum. Brain 131:1979–1989. https://doi.org/10.1093/brain/awn126

    Article  PubMed  Google Scholar 

  4. 4.

    Balk SJ (2011) Ultraviolet radiation: a hazard to children and adolescents. Pediatrics 127:e791–e817. https://doi.org/10.1542/peds.2010-3502

    Article  PubMed  Google Scholar 

  5. 5.

    Bauer A, Diepgen TL, Schmitt J (2011) Is occupational solar ultraviolet irradiation a relevant risk factor for basal cell carcinoma? A systematic review and meta-analysis of the epidemiological literature. Br J Dermatol 165:612–625. https://doi.org/10.1111/j.1365-2133.2011.10425.x

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bradford PT, Goldstein AMA, Tamura D et al (2011) Cancer and neurologic degeneration in xeroderma. J Med Genet 48:168–176. https://doi.org/10.1136/jmg.2010.083022.CANCER

    Article  PubMed  Google Scholar 

  7. 7.

    Cadet J, Mouret S, Ravanat J‑L, Douki T (2012) Photoinduced damage to cellular DNA: direct and photosensitized reactions. Photochem Photobiol 88:1048–1065. https://doi.org/10.1111/j.1751-1097.2012.01200.x

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Chan TA, Yarchoan M, Jaffee E et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30:44–56. https://doi.org/10.1093/annonc/mdy495

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Chen E, Cleaver JE, Weber CA et al (1994) Trichothiodystrophy: clinical spectrum, central nervous system imaging, and biochemical characterization of two siblings. J Invest Dermatol 103:154S–158S. https://doi.org/10.1111/1523-1747.ep12399493

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T (2013) UV radiation and the skin. Int J Mol Sci 14:12222–12248. https://doi.org/10.3390/ijms140612222

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    DiGiovanna JJ, Kraemer KH (2012) Shining a light on xeroderma pigmentosum. J Invest Dermatol 132:785–796. https://doi.org/10.1038/jid.2011.426

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Emmert S (2011) Xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. In: Irvine A, Hoeger PH, Yan A (Hrsg) Harper’s textbook of pediatric dermatology. Wiley-Blackwell, Oxford (UK), S 135.1–135.24

    Google Scholar 

  13. 13.

    Fife D, Laitinen MA, Myers DJ, Landsteiner PB (2017) Vismodegib therapy for basal cell carcinoma in an 8‑year-old Chinese boy with xeroderma pigmentosum. Pediatr Dermatol 34:163–165. https://doi.org/10.1111/pde.13080

    Article  PubMed  Google Scholar 

  14. 14.

    Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer 41:45–60. https://doi.org/10.1016/j.ejca.2004.10.016

    Article  PubMed  Google Scholar 

  15. 15.

    Giannotti B, Vanzi L, Difonzo EM, Pimpinelli N (2003) The treatment of basal cell carcinomas in a patient with xeroderma pigmentosum with a combination of imiquimod 5 % cream and oral acitretin. Clin Exp Dermatol 28:33–35. https://doi.org/10.1046/j.1365-2230.28.s1.11.x

    Article  PubMed  Google Scholar 

  16. 16.

    Giordano CN, Yew YW, Spivak G, Lim HW (2016) Understanding photodermatoses associated with defective DNA repair. J Am Acad Dermatol 75:855–870. https://doi.org/10.1016/j.jaad.2016.03.045

    Article  PubMed  Google Scholar 

  17. 17.

    Hauschild A, Eichstaedt J, Möbus L et al (2017) Regression of melanoma metastases and multiple non-melanoma skin cancers in xeroderma pigmentosum by the PD1-antibody pembrolizumab. Eur J Cancer 77:84–87. https://doi.org/10.1016/j.ejca.2017.02.026

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hendriks G, Calléja F, Besaratinia A et al (2010) Transcription-dependent cytosine deamination is a novel mechanism in ultraviolet light-induced mutagenesis. Curr Biol 20:170–175. https://doi.org/10.1016/j.cub.2009.11.061

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hirai Y, Kodama Y, Moriwaki SI et al (2006) Heterozygous individuals bearing a founder mutation in the XPA DNA repair gene comprise nearly 1 % of the Japanese population. Mutat Res 601:171–178. https://doi.org/10.1016/j.mrfmmm.2006.06.010

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ichihashi M, Ueda M, Budiyanto A et al (2003) UV-induced skin damage. Toxicology 189:21–39. https://doi.org/10.1016/S0300-483X(03)00150-1

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Ijaz A, Wolf S, Mandukhail SR et al (2019) UV-sensitive syndrome: whole exome sequencing identified a nonsense mutation in the gene UVSSA in two consanguineous pedigrees from Pakistan. J Dermatol Sci 95:113–118. https://doi.org/10.1016/j.jdermsci.2019.08.003

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Itoh T, Fujiwara Y, Ono T, Yamaizumi M (1995) UVs syndrome, a new general category of photosensitive disorder with defective DNA repair, is distinct from xeroderma pigmentosum variant and rodent complementation group I. Am J Hum Genet 56:1267–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Kaneko H, Kondo N (2004) Clinical features of Bloom syndrome and function of the causative gene, BLM helicase. Expert Rev Mol Diagn 4:393–401. https://doi.org/10.1586/14737159.4.3.393

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kraemer KH, DiGiovanna JJ, Moshell AN et al (1988) Prevention of skin cancer in xeroderma pigmentosum with the use of oral Isotretinoin. N Engl J Med 318:1633–1637. https://doi.org/10.1056/NEJM198806233182501

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Kraemer KH, Lee MM, Andrews AD, Lambert WC (1994) The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer: the xeroderma pigmentosum paradigm. Arch Dermatol 130:1018–1021. https://doi.org/10.1001/archderm.1994.01690080084012

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Larizza L, Roversi G, Volpi L (2010) Rothmund-Thomson syndrome. Orphanet J Rare Dis 5:2. https://doi.org/10.1186/1750-1172-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Latour I, Hernández-Martín A, Ged C et al (2018) Reversed actinic damage in two children with xeroderma pigmentosum treated with topical imiquimod. J Eur Acad Dermatol Venereol 32:e282–e284. https://doi.org/10.1111/jdv.14818

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Leemans G, De Raeve L, Keymolen K (2020) ERCC2 mutations in two siblings with a severe trichothiodystrophy phenotype. J Eur Acad Dermatol Venereol 34:876–879. https://doi.org/10.1111/jdv.16134

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lehmann J, Schubert S, Emmert S (2014) Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 12:867–872. https://doi.org/10.1111/ddg.12419

    Article  PubMed  Google Scholar 

  30. 30.

    Lehmann J, Seebode C, Martens MC, Emmert S (2018) Xeroderma pigmentosum—facts and perspectives. Aktuelle Derm 44:232–236. https://doi.org/10.1055/s-0043-123031

    Article  Google Scholar 

  31. 31.

    Malhotra AK, Gupta S, Khaitan BK, Verma KK (2008) Multiple basal cell carcinomas in xeroderma pigmentosum treated with imiquimod 5 % cream. Pediatr Dermatol 25:488–491. https://doi.org/10.1111/j.1525-1470.2008.00727.x

    Article  PubMed  Google Scholar 

  32. 32.

    Marrot L, Meunier J‑R (2008) Skin DNA photodamage and its biological consequences. J Am Acad Dermatol 58:S139–48. https://doi.org/10.1016/j.jaad.2007.12.007

    Article  PubMed  Google Scholar 

  33. 33.

    Martens MC, Boeckmann L, Emmert S (2020) Genetisch bedingte Hauterkrankungen – xeroderma pigmentosum und das CEDNIK-syndrom. Aktuelle Derm 46:375–378. https://doi.org/10.1055/a-1148-3867

    Article  Google Scholar 

  34. 34.

    Martens MC, Emmert S, Boeckmann L (2020) Sunlight, vitamin D, and xeroderma pigmentosum, S 319–331

    Google Scholar 

  35. 35.

    Martens MC, Seebode C, Lehmann J, Emmert S (2018) Photocarcinogenesis and skin cancer prevention strategies: an update. Anticancer Res 38:1–6. https://doi.org/10.21873/anticanres.12334

    CAS  Article  Google Scholar 

  36. 36.

    Moscarella E, Argenziano G, Longo C, Aladren S (2017) Management of cancerization field with a medical device containing photolyase: a randomized, double-blind, parallel-group pilot study. J Eur Acad Dermatol Venereol 31:e401–e403. https://doi.org/10.1111/jdv.14209

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Nagore E, Sevila A, Sanmartin O et al (2003) Excellent response of basal cell carcinomas and pigmentary changes in xeroderma pigmentosum to imiquimod 5 % cream. Br J Dermatol 149:858–861. https://doi.org/10.1046/j.1365-2133.2003.05613.x

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Natale V, Raquer H (2017) Xeroderma pigmentosum-Cockayne syndrome complex. Orphanet J Rare Dis 12:65. https://doi.org/10.1186/s13023-017-0616-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nijsten T, Lapière K, Lambert J (2005) A patient with xeroderma pigmentosum treated with imiquimod 5 % cream. J Am Acad Dermatol 52:169–170. https://doi.org/10.1016/j.jaad.2004.06.034

    Article  Google Scholar 

  40. 40.

    Nouspikel T (2009) Nucleotide excision repair: variations on versatility. Cell Mol Life Sci 66:994–1009. https://doi.org/10.1016/0165-1161(80)90217-4

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Ramkumar HL, Brooks BP, Cao X et al (2011) Ophthalmic manifestations and histopathology of xeroderma pigmentosum: two clinicopathological cases and a review of the literature. Surv Ophthalmol 56:348–361. https://doi.org/10.1016/j.survophthal.2011.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Rapin I, Lindenbaum Y, Dickson DW et al (2000) Cockayne syndrome and xeroderma pigmentosum: DNA repair disorders with overlaps and paradoxes. Neurology 55:1442–1449. https://doi.org/10.1212/WNL.55.10.1442

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    van der Rhee HJ, de Vries E, Coebergh JW (2016) Regular sun exposure benefits health. Med Hypotheses 97:34–37. https://doi.org/10.1016/j.mehy.2016.10.011

    Article  PubMed  Google Scholar 

  44. 44.

    Roseeuw D (2003) The treatment of basal skin carcinomas in two sisters with xeroderma pigmentosum. Clin Exp Dermatol 28:30–32. https://doi.org/10.1046/j.1365-2230.28.s1.10.x

    Article  PubMed  Google Scholar 

  45. 45.

    Salomon G, Maza A, Boulinguez S et al (2018) Efficacy of anti-programmed cell death‑1 immunotherapy for skin carcinomas and melanoma metastases in a patient with xeroderma pigmentosum. Br J Dermatol 178:1199–1203. https://doi.org/10.1111/bjd.16270

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Schlarbaum JP, Lazovich D, Dodd E et al (2020) Examination of use and barriers for five sun protection strategies in parents and their children. Pediatr Dermatol. https://doi.org/10.1111/pde.14250

    Article  PubMed  Google Scholar 

  47. 47.

    Schmitt J, Haufe E, Trautmann F et al (2018) Occupational UV-exposure is a major risk factor for basal cell carcinoma. J Occup Environ Med 60:36–43. https://doi.org/10.1097/JOM.0000000000001217

    Article  PubMed  Google Scholar 

  48. 48.

    Schmitt J, Seidler A, Diepgen TL, Bauer A (2011) Occupational ultraviolet light exposure increases the risk for the development of cutaneous squamous cell carcinoma: a systematic review and meta-analysis. Br J Dermatol 164:291–307. https://doi.org/10.1111/j.1365-2133.2010.10118.x

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Schubert S, Lehmann J, Kalfon L et al (2014) Clinical utility gene card for: xeroderma pigmentosum. Eur J Hum Genet 22:953. https://doi.org/10.1038/ejhg.2013.233

    CAS  Article  Google Scholar 

  50. 50.

    Soura E, Plaka M, Dessinioti C et al (2018) Use of vismodegib for the treatment of multiple basal cell carcinomas in a patient with xeroderma pigmentosum. Pediatr Dermatol 35:e334–e336. https://doi.org/10.1111/pde.13610

    Article  PubMed  Google Scholar 

  51. 51.

    Spivak G, Hanawalt PC (2015) Photosensitive human syndromes. Mutat Res 776:24–30. https://doi.org/10.1016/j.mrfmmm.2014.11.003

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Suozzi K, Turban J, Girardi M (2020) Cutaneous photoprotection: a review of the current status and evolving strategies. Yale J Biol Med 93:55–67

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Tamura D, DiGiovanna JJ, Khan SG, Kraemer KH (2014) Living with xeroderma pigmentosum: comprehensive photoprotection for highly photosensitive patients. Photodermatol Photoimmunol Photomed 30:146–152. https://doi.org/10.1111/phpp.12108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Tanaka K, Sekiguchi M, Okada Y (1975) Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci USA 72:4071–4075. https://doi.org/10.1073/PNAS.72.10.4071

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Theil AF, Botta E, Raams A et al (2019) Bi-allelic TARS mutations are associated with brittle hair phenotype. Am J Hum Genet 105:434–440. https://doi.org/10.1016/j.ajhg.2019.06.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Valejo Coelho MM, Matos TR, Apetato M (2016) The dark side of the light: mechanisms of photocarcinogenesis. Clin Dermatol 34:563–570. https://doi.org/10.1016/j.clindermatol.2016.05.022

    Article  PubMed  Google Scholar 

  57. 57.

    Veierød MB, Couto E, Lund E et al (2014) Host characteristics, sun exposure, indoor tanning and risk of squamous cell carcinoma of the skin. Int J Cancer 135:413–422. https://doi.org/10.1002/ijc.28657

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Vink AA, Roza L (2001) Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B 65:101–104

    CAS  Article  Google Scholar 

  59. 59.

    Weisberg NK, Varghese M (2002) Therapeutic response of a brother and sister with xeroderma pigmentosum to imiquimod 5 % cream. Dermatol Surg 28:518–523

    PubMed  Google Scholar 

  60. 60.

    Yang JQ, Chen XY, Engle MY, Wang JY (2015) Multiple facial basal cell carcinomas in xeroderma pigmentosum treated with topical imiquimod 5 % cream. Dermatol Ther 28:243–247. https://doi.org/10.1111/dth.12217

    Article  PubMed  Google Scholar 

  61. 61.

    Yew YW, Giordano CN, Spivak G, Lim HW (2016) Understanding photodermatoses associated with defective DNA repair: photosensitive syndromes without associated cancer predisposition. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2016.03.044

    Article  PubMed  Google Scholar 

  62. 62.

    Zahid S, Brownell I (2008) Repairing DNA damage in xeroderma pigmentosum: T4N5 lotion and gene therapy. J Drugs Dermatol 7:405–408

    PubMed  Google Scholar 

  63. 63.

    Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF (2014) S3-Leitlinie Prävention von Hautkrebs, Langversion 1.1. http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html. Zugegriffen: 26. Sept. 2020 (AWMF Registernummer: 032/052OL)

Download references

Förderung

Diese Arbeit wurde teilweise durch den Europäischen Sozialfonds (ESF) mit dem Förderkennzeichen ESF/14-BM-A55-0001/18 und dem Ministerium für Bildung, Wissenschaft und Kultur des Landes Mecklenburg-Vorpommern, DFG EM 63/13‑1, die Damp Stiftung, das TBI Projekt „AmbuPlas“ und das Nachwuchsförderprogramm FORUN der Universitätsmedizin Rostock gefördert. Einzelne Passagen des Textes wurden bereits in ähnlicher Form in anderen Publikationen der Arbeitsgruppe der Autoren publiziert.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. rer. nat. L. Boeckmann.

Ethics declarations

Interessenkonflikt

M.C. Martens, S. Emmert und L. Boeckmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

P. Höger, Wilhelmstift

F. Zepp, Mainz

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martens, M.C., Emmert, S. & Boeckmann, L. Genetisch bedingte UV‑Empfindlichkeit. Monatsschr Kinderheilkd (2021). https://doi.org/10.1007/s00112-020-01115-3

Download citation

Schlüsselwörter

  • Fotokarzinogenese
  • Nukleotidexzisionsreparatur
  • Hautkrebs
  • Xeroderma pigmentosum
  • UV-Schutz

Keywords

  • Photocarcinogenesis
  • Nucleotide excision repair
  • Skin cancer
  • Xeroderma pigmentosum
  • UV protection