Skip to main content
Log in

Magnetresonanztomographie der Lunge bei zystischer Fibrose

Magnetic resonance imaging of the lung in cystic fibrosis

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Bei der Multisystemerkrankung zystische Fibrose („cystic fibrosis“, CF) bestimmt die pulmonale Manifestation die Morbidität und Mortalität der Patienten. Die charakteristischen pulmonalen Manifestationen können mithilfe des Röntgens, der Computertomographie (CT) und/oder der Magnetresonanztomographie (MRT) visualisiert werden. Aktuell wird die MRT-Untersuchung der Lunge zunehmend bei wiederholten bildgebenden Untersuchungen der Patienten mit CF eingesetzt. Studienergebnissen zufolge kann die MRT die pulmonalen CF-Veränderungen vergleichbar zu nativen „Low-dose“-CT-Untersuchungen abbilden. Vorteil der MRT ist neben ihrer fehlenden Strahlenexposition die Möglichkeit, eine Läsion mithilfe verschiedener Wichtungen und Techniken darzustellen. Zudem können funktionelle Informationen über Lungenventilation und -perfusion gewonnen werden. Die neuartige „Phase-resolved-functional-lung“(PREFUL)-Technik ermöglicht eine sehr sensitive quantitative Ventilations- und Perfusionsanalyse der gesamten Lunge ohne die Notwendigkeit einer i.v.-Kontrastmittel-Applikation. Diese schonende Technik eignet sich insbesondere auch zum Therapie-Monitoring bei Patienten mit CF.

Abstract

In the multisystemic disease cystic fibrosis (CF) the pulmonary manifestation determines the morbidity and mortality of the patients. The characteristic pulmonary manifestations can be visualized by X‑ray imaging, computed tomography (CT) and/or by magnetic resonance imaging (MRI). Currently, MRI of the lungs is increasingly used for repeated imaging examinations in patients with CF. Study results show that MRI can display the pulmonary alterations of CF with similar resolution to unenhanced low-dose CT examinations. In addition to the lack of radiation exposure, the advantages of MRI are the possibility to visualize a lesion by different weightings and techniques. Furthermore, MRI can provide functional information about lung ventilation and perfusion. The novel phase resolved functional lung (PREFUL) technique enables a very sensitive quantitative ventilation and perfusion analysis of the whole lung without the need for intravenous application of MR contrast media. This gentle technique is also particularly suitable for therapeutic monitoring in patients with CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. World Health Organization (2004) The molecular genetic epidemiology of cystic fibrosis

    Google Scholar 

  2. Knowlton RG, Cohen-Haguenauer O, Van Cong N et al (1985) A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318:380–382

    Article  CAS  PubMed  Google Scholar 

  3. Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001

    Article  CAS  PubMed  Google Scholar 

  4. Cystic fibrosis mutation database. http://www.genet.sickkids.on.ca. Zugegriffen: 11.02.2020

  5. McKone EF, Emerson SS, Edwards KL et al (2003) Effect of genotype on phenotype and mortality in cystic fibrosis: a retrospective cohort study. Lancet 361:1671–1676

    Article  CAS  PubMed  Google Scholar 

  6. Elborn JS (2016) Cystic fibrosis. Lancet 388:2519–2531

    Article  CAS  PubMed  Google Scholar 

  7. Wielpütz MO, Eichinger M, Biederer J et al (2016) Imaging of cystic fibrosis lung disease and clinical interpretation. Fortschr Röntgenstr 188:834–845

    Article  Google Scholar 

  8. Eichinger M, Heussel CP, Kauczor HU et al (2010) Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease. J Magn Reson Imaging 32:1370–1378

    Article  PubMed  Google Scholar 

  9. Schmidt H, Posselt HG (2008) Bildgebung bei zystischer Fibrose. Radiol Up2date 8:159–177

    Article  Google Scholar 

  10. Eichinger M, Optazaite DE, Kopp-Schneider A et al (2012) Morphologic and functional scoring of cystic fibrosis lung disease using MRI. Eur J Radiol 81:1321–1329

    Article  PubMed  Google Scholar 

  11. Schäfer J, Griese M, Chandrasekaran R et al (2018) Pathogenesis, imaging and clinical characteristics of CF and non-CF bronchiectasis. BMC Pulm Med 18:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stern EJ, Müller NL, Swensen SJ et al (1995) CT mosaic pattern of lung attenuation: etiologies and terminology. J Thorac Imaging 10:294–297

    Article  CAS  PubMed  Google Scholar 

  13. Leutz-Schmidt P, Stahl M, Sommerburg O et al (2018) Non-contrast enhanced magnetic resonance imaging detects mosaic signal intensity in early cystic fibrosis lung disease. Eur J Radiol 101:178–183

    Article  PubMed  Google Scholar 

  14. Wormanns D, Hamer OW (2015) Glossar thoraxradiologischer Begriffe entsprechend der Terminologie der Fleischner Society. Fortschr Röntgenstr 187:638–661

    Article  CAS  Google Scholar 

  15. Wielpütz MO, Eichinger M, Puderbach M (2013) Magnetic resonance imaging of cystic fibrosis lung disease. J Thorac Imaging 28:151–159

    Article  PubMed  Google Scholar 

  16. Helbich TH, Heinz-Peer G, Eichler I et al (1999) Cystic fibrosis: CT assessment of lung involvement in children and adults. Radiology 213:537–544

    Article  CAS  PubMed  Google Scholar 

  17. Brody AS, Kosorok MR, Li Z et al (2006) Reproducibility of a scoring system for computed tomography scanning in cystic fibrosis. J Thorac Imaging 21:14–21

    Article  PubMed  Google Scholar 

  18. Bhalla M, Turcios N, Aponte V et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    Article  CAS  PubMed  Google Scholar 

  19. den Harder AM, Willemink MJ, de Ruiter QM et al (2015) Achievable dose reduction using iterative reconstruction for chest computed tomography: a systematic review. Eur J Radiol 84:2307–2313

    Article  Google Scholar 

  20. O’Connor OJ, Vandeleur M, McGarrigle AM et al (2010) Development of low-dose protocols for thin-section CT assessment of cystic fibrosis in pediatric patients. Radiology 257:820–829

    Article  PubMed  Google Scholar 

  21. Ernst CW, Basten IA, Ilsen B et al (2014) Pulmonary disease in cystic fibrosis: assessment with chest CT at chest radiography dose levels. Radiology 273:597–605

    Article  PubMed  Google Scholar 

  22. Fazel R, Krumholz HM, Wang Y et al (2009) Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirsch FW, Sorge I, Vogel-Claussen J et al (2020) The current status and further prospects for lung magnetic resonance imaging in pediatric radiology [published online im Druck, 2020 Jan 29]. Pediatr Radiol. https://doi.org/10.1007/s00247-019-04594-z

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wild JM, Marshall H, Bock M et al (2012) MRI of the lung (1/3): methods. Insights Imaging 3:345–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carr DH, Oades P, Trotman-Dickenson B et al (1995) Magnetic resonance scanning in cystic fibrosis: comparison with computed tomography. Clin Radiol 50:84–89

    Article  CAS  PubMed  Google Scholar 

  26. Ley-Zaporozhan J, Ley S, Sommerburg O et al (2009) Clinical application of MRI in children for the assessment of pulmonary diseases. Fortsch Röntgenstr 181:419–432

    Article  CAS  Google Scholar 

  27. Ciet P, Tiddens HA, Wielopolski PA et al (2015) Magnetic resonance imaging in children: common problems and possible solutions for lung and airways imaging. Pediatr Radiol 45:1901–1915

    Article  PubMed  PubMed Central  Google Scholar 

  28. Puderbach M, Eichinger M, Haeselbarth J et al (2007) Assessment of morphological MRI for pulmonary changes in cystic fibrosis (CF) patients: comparison to thin-section CT and chest x‑ray. Invest Radiol 42:715–725

    Article  PubMed  Google Scholar 

  29. Renz DM, Scholz O, Böttcher J et al (2015) Comparison between magnetic resonance imaging and computed tomography of the lung in patients with cystic fibrosis with regard to clinical, laboratory, and pulmonary functional parameters. Invest Radiol 50:733–742

    Article  PubMed  Google Scholar 

  30. Ciet P, Serra G, Bertolo S et al (2016) Assessment of CF lung disease using motion corrected PROPELLER MRI: a comparison with CT. Eur Radiol 26:780–787

    Article  PubMed  Google Scholar 

  31. Dournes G, Menut F, Macey J et al (2016) Lung morphology assessment of cystic fibrosis using MRI with ultra-short echo time at submillimeter spatial resolution. Eur Radiol 26:3811–3820

    Article  PubMed  Google Scholar 

  32. Dournes G, Berger P, Refait J et al (2017) Allergic bronchopulmonary aspergillosis in cystic fibrosis: MR imaging of airway mucus contrasts as a tool for diagnosis. Radiology 285:261–269

    Article  PubMed  Google Scholar 

  33. Scholz O, Denecke T, Böttcher J et al (2017) MRI of cystic fibrosis lung manifestations: sequence evaluation and clinical outcome analysis. Clin Radiol 72:754–763

    Article  CAS  PubMed  Google Scholar 

  34. Leutz-Schmidt P, Eichinger M, Stahl M et al (2019) 10 Jahre Thorax-MRT für Patienten mit zystischer Fibrose : Übertragung vom Versuchsstadium in die klinische Routine. Radiologe 59(Suppl 1):10–20

    Article  PubMed  Google Scholar 

  35. Wielpütz MO, von Stackelberg O, Stahl M et al (2018) Multicentre standardisation of chest MRI as radiation-free outcome measure of lung disease in young children with cystic fibrosis. J Cyst Fibros 17:518–527

    Article  PubMed  Google Scholar 

  36. Herrmann KH, Krämer M, Reichenbach JR (2016) Time efficient 3D radial UTE sampling with fully automatic delay compensation on a clinical 3T MR scanner. PLoS ONE 11:e150371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wielpütz MO, Triphan SM, Ohno Y et al (2019) Outracing lung signal decay—potential of ultrashort echo time MRI. Fortschr Röntgenstr 191:415–423

    Article  Google Scholar 

  38. Roach DJ, Crémillieux Y, Fleck RJ et al (2016) Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Ann Am Thorac Soc 13:1923–1931

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wielpütz MO, Puderbach M, Kopp-Schneider A et al (2014) Magnetic resonance imaging detects changes in structure and perfusion, and response to therapy in early cystic fibrosis lung disease. Am J Respir Crit Care Med 189:956–965

    Article  PubMed  Google Scholar 

  40. Gutberlet M, Kaireit TF, Voskrebenzev A et al (2018) Free-breathing dynamic 19F Gas MR imaging for mapping of regional lung ventilation in patients with COPD. Radiology 286:1040–1051

    Article  PubMed  Google Scholar 

  41. Kaireit TF, Gutberlet M, Voskrebenzev A et al (2018) Comparison of quantitative regional ventilation-weighted fourier decomposition MRI with dynamic fluorinated gas washout MRI and lung function testing in COPD patients. J Magn Reson Imaging 47:1534–1541

    Article  PubMed  Google Scholar 

  42. Woods JC, Wild JM, Wielpütz MO et al (2019) Current state of the art MRI for the longitudinal assessment of cystic fibrosis. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27030

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bauman G, Puderbach M, Heimann T et al (2013) Validation of fourier decomposition MRI with dynamic contrast-enhanced MRI using visual and automated scoring of pulmonary perfusion in young cystic fibrosis patients. Eur J Radiol 82:2371–2377

    Article  PubMed  Google Scholar 

  44. Behrendt L, Voskrebenzev A, Klimeš F et al (2019) Validation of automated perfusion-weighted phase-resolved functional lung (PREFUL)-MRI in patients with pulmonary diseases. J Magn Reson Imaging. https://doi.org/10.1002/jmri.27027

    Article  PubMed  Google Scholar 

  45. Kaireit TF, Sorrentino SA, Renne J et al (2017) Functional lung MRI for regional monitoring of patients with cystic fibrosis. PLoS ONE 12:e187483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Moher Alsady T, Voskrebenzev A, Greer M et al (2019) MRI-derived regional flow-volume loop parameters detect early-stage chronic lung allograft dysfunction. J Magn Reson Imaging 50:1873–1882

    Article  PubMed  Google Scholar 

  47. Schaefer JF, Hector A, Schmidt K et al (2018) A semiquantitative MRI-Score can predict loss of lung function in patients with cystic fibrosis: preliminary results. Eur Radiol 28:74–84

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Renz.

Ethics declarations

Interessenkonflikt

D.M. Renz, M. Dohna, J. Böttcher, T.F. Kaireit, A. Pfeil, F. Streitparth und J. Vogel-Claussen geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Staatz, Mainz

F. Zepp, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renz, D.M., Dohna, M., Böttcher, J. et al. Magnetresonanztomographie der Lunge bei zystischer Fibrose. Monatsschr Kinderheilkd 168, 406–415 (2020). https://doi.org/10.1007/s00112-020-00890-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-020-00890-3

Schlüsselwörter

Keywords

Navigation