Skip to main content
Log in

Umweltbelastung und Krebsrisiko im Kindesalter

Environmental burden and cancer risk in childhood

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Krebs stellt bei Kindern die zweithäufigste Todesursache dar, obwohl diese Erkrankungen mit 140 jährlichen Neuerkrankungen/1 Mio. unter 15-Jähriger verhältnismäßig selten ist. Das Diagnosespektrum weicht sehr von dem im Erwachsenenalter ab.

Fragestellung

Fragen sind, welche Rolle Umweltfaktoren bei der Entstehung von Krebs im Kindesalter spielen, und welche anderen Ursachen es gibt.

Material und Methoden

Die Ursachen von Krebs im Kindesalter werden vielfältig erforscht. Neben molekulargenetischen Ansätzen gibt es epidemiologische Methoden der Ursachenforschung. Hier sind Krebsregister essenziell, die die Basis etwa für Fall-Kontroll-Studien bilden. Die im vorliegenden Beitrag präsentierten Ergebnisse leiten sich von solchen epidemiologischen Studien ab.

Ergebnisse

Im Zusammenhang mit Krebs im Kindesalter werden als Umweltfaktoren ionisierende und nichtionisierende Strahlung, Pestizidbelastung oder die berufliche Exposition der Eltern diskutiert. Indirekt im Zusammenhang mit Umwelteinflüssen stehend, spielen Migration, Infektionen oder die Änderung des Lebensstils eine Rolle. Auch genetische Prädispositionen, Faktoren zu Schwangerschaftsverlauf und Kindesentwicklung sowie – besonders bei Leukämien im Kindesalter – Faktoren in Bezug auf das Immunsystem (z. B. Still- und Impfverhalten) sind mit der Entstehung assoziiert.

Schlussfolgerungen

Generell sind die Ursachen von Krebs im Kindesalter weiterhin zum größten Teil ungeklärt. Einige Umweltfaktoren mögen ursächlich wirken. Jedoch haben diese Faktoren einen niedrigeren Stellenwert, als landläufig angenommen wird.

Abstract

Background

Cancer is the second most common cause of death in childhood even though it is relatively rare with 140 new cases of cancer per 1 million children below 15 years of age per year. The spectrum of diagnoses is different compared to cancer diagnoses in adulthood.

Objectives

Frequently asked questions are what impact environmental factors can have and what other potential causes are there for cancer in childhood.

Material and methods

A great deal of research is carried out into the causes of childhood cancer. Besides molecular and genetic research, epidemiological methods also play an important role. Population-based cancer registries and case-control studies based on these registries are methods used to investigate potential associations. The results presented in this article are mainly based on epidemiological studies.

Results

In the context of childhood cancer, ionizing and non-ionizing radiation as well as exposure to pesticides and parental occupational exposure are discussed as environmental factors. In association with the environmental factors migration, infections and general changes of lifestyle also indirectly play a role. Furthermore, genetic predisposition, factors in the course of pregnancy and child development and, particularly for childhood leukemia with respect to the immune system (e. g. breastfeeding and immunization), are associated with childhood cancer.

Conclusion

In general, the causes of childhood cancer are still mostly unexplained. Some environmental factors may play a role but these factors seem to have less of an impact than generally assumed by the public.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Heron M, Centers for Disease Control and Prevention (2010) Deaths: leading causes for 2006. Natl Vital Stat Rep 58(14):1–99

  2. Steliarova-Foucher E, Stiller C, Kaatsch P et al (2004) Geographical patterns and time trends of cancer incidence and survival among children and adolescents in Europe since 1970s (the ACCIS project): an epidemiological study. Lancet 364:2097–2105

    Article  PubMed  Google Scholar 

  3. Vassal G, Schrappe M, Pritchard-Jones K et al (2016) The SIOPE strategic plan: A European cancer plan for children and adolescents. J Cancer Policy 8:17–32

    Article  Google Scholar 

  4. Gatta G, Botta L, Rossi S, EUROCARE working group et al (2013) Childhood cancer survival in Europe 1999–2007: results of EUROCARE-5 – a population-based study. Lancet Oncol 15:35–47

    Article  PubMed  Google Scholar 

  5. Kaatsch P, Grabow D, Spix J (2016) German Childhood Cancer Registry – Annual Report 2016 (1980–2015). Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Mainz (www.kinderkrebsregister.de)

    Google Scholar 

  6. Steliarova-Foucher E, Stiller C, Colombet M et al (2015) Registration of childhood cancer: moving towards a pan-European coverage? Eur J Cancer 51:1064–1079

    Article  PubMed  Google Scholar 

  7. Schüz J, Blettner M, Michaelis J, Kaatsch P (2005) Ursachen von Leukämien im Kindesalter: Resümee einer Fallkontrollstudie des Deutschen Kinderkrebsregisters. Dtsch Arztebl 102:A2557–2564

    Google Scholar 

  8. Metayer C, Milne E, Clavel J et al (2013) The Childhood Leukemia International Consortium. Cancer Epidemiol 37:336–347

    Article  PubMed  PubMed Central  Google Scholar 

  9. Matthes R, Ziegelberger G (2008) Risk factors for childhood leukaemia. Radiat Prot Dosimetry 132(special issue):107–274

  10. Little J (1999) Epidemiology of childhood cancer. IARC Scientific Publication No. 149. International Agency for Research on Cancer, Lyon

    Google Scholar 

  11. Bunin GR (2004) Nongenetic causes of childhood cancer: evidence from international variation, time trends, and risk factor studies. Toxicol Appl Pharmacol 199:91–103

    Article  CAS  PubMed  Google Scholar 

  12. Eden T (2010) Aetiology of childhood leukaemia. Cancer Treat Rev 36:286–297

    Article  CAS  PubMed  Google Scholar 

  13. Bailey HD, Infante-Rivard C, Metayer C et al (2015) Home pesticide exposures and risk of childhood leukemia: findings from the childhood leukemia international consortium. Int J Cancer 137:2644–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ripperger T, Bielack SS, Borkhardt A (2017) Childhood cancer predisposition syndromes – a concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genetic Part A 9999:1–21

    Google Scholar 

  15. Bailey HD, Fritschi L, Infante-Rivard C et al (2014) Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Int J Cancer 135(9):2157–2172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bailey HD, Fritschi L, Metayer C et al (2014) Parental occupational paint exposure and risk of childhood leukemia in the offspring: findings from the Childhood Leukemia International Consortium. Cancer Causes Control 25(10):1351–1367

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kaatsch P, Scheidemann-Wesp U, Schüz J (2010) Maternal use of antibiotics and cancer in the off-spring: results of a case-control study in Germany. Cancer Causes Control 21:1335–1345

    Article  PubMed  Google Scholar 

  18. Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6:193–203

    Article  CAS  PubMed  Google Scholar 

  19. Kinlen L, Doll R (2004) Population mixing and childhood leukaemia: Fallon and other US clusters. Br J Cancer 91:1–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schüz J, Morgan G, Böhler E et al (2003) Atopic disease and childhood acute lymphoblastic leukemia. Int J Cancer 105:255–260

    Article  PubMed  Google Scholar 

  21. Gardner MJ, Winter PD (1984) Cancer in Cumberland during 1959–78 with reference to cancer in young people around Windscale. Lancet 1:216–217

    Article  CAS  PubMed  Google Scholar 

  22. Sharp L, Black RJ, Harkness EF, McKinney PA (1996) Incidence of childhood leukaemia and non-Hodgkin’s lymphoma in the vicinity of nuclear sites in Scotland, 1968–93. Occup Environ Med 53:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hofmann W, Terschueren C, Richardson DB (2007) Childhood leukemia in the vicinity of the Geesthacht nuclear establishments near Hamburg, Germany. Environ Health Perspect 115:947–952

    Article  Google Scholar 

  24. Laurier D, Jacob S, Bernier MO et al (2008) Epidemiological studies of leukaemia in children and young adults around nuclear facilities: a critical review. Radiat Prot Dosimetry 132(special issue):182–190

    Article  CAS  PubMed  Google Scholar 

  25. Michaelis J, Kaletsch U, Burkart W, Grosche B (1997) Infant leukaemia after the Chernobyl accident [letter]. Nature 387:246

    Article  CAS  PubMed  Google Scholar 

  26. Hammer GP, Seidenbusch MC, Schneider K, Regulla DF, Zeeb H, Spix C, Blettner M (2009) A cohort study of childhood cancer incidence after postnatal diagnostic X‑ray exposure. Radiat Res 171:504–512

    Article  CAS  PubMed  Google Scholar 

  27. Pokora R, Krille L, Dreger S, KiCT Study Group et al (2016) Computed tomography in Germany – results and insights from a cohort study and health insurance data (AOK). Dtsch Arztebl Int 113:721–772

    PubMed  PubMed Central  Google Scholar 

  28. Basea M, Pearce MS, Kesminiene A et al (2015) EPI-CT: design, challenges and epidemiological methods of an international study on cancer risk after paediatric and young adult CT. J Radiol Prot 35:611–628

    Article  Google Scholar 

  29. Wertheimer N, Leeper E (1979) Electrical wiring configurations and childhood cancer. Am J Epidemiol 109:273–384

    Article  CAS  PubMed  Google Scholar 

  30. Ahlbom A, Day N, Feychting M et al (2000) A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer 83:692–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. International Agency of Research on Cancer (2002) Non-ionizing radiation, part 1: static and Extremely Low-Frequency (ELF) electric and magnetic fields. IARC Monographs on the evaluation of carcinogenic risks to humans, Bd. 80. International Agency of Research on Cancer, Lyon

  32. Kaatsch P, Steliarova-Foucher E, Crocetti E et al (2006) Time trends of cancer incidence in European children (1978–1997): report from the ACCIS project. Eur J Cancer 42:1961–1971

    Article  PubMed  Google Scholar 

  33. Spix C, Eletr D, Blettner M, Kaatsch P (2008) Temporal trends in the incidence rate of childhood cancer in Germany 1987–2004. Int J Cancer 122:1859–1867

    Article  CAS  PubMed  Google Scholar 

  34. McNally RJO, Kelsey AM, Cairns DP et al (2001) Temporal increases in the incidence of childhood solid tumors seen in Northwest England (1954–1998) are likely to be real. Cancer 92:1967–1976

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kaatsch.

Ethics declarations

Interessenkonflikt

P. Kaatsch gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

F. Zepp, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaatsch, P. Umweltbelastung und Krebsrisiko im Kindesalter. Monatsschr Kinderheilkd 165, 395–401 (2017). https://doi.org/10.1007/s00112-017-0281-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-017-0281-5

Schlüsselwörter

Keywords

Navigation