Skip to main content
Log in

Umweltmikrobiom

Rolle bei der Entwicklung von Allergie und Asthma

Environmental microbiome

Role in development of allergies and asthma

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Es gibt immer mehr Hinweise aus epidemiologischen und tierexperimentellen Studien, dass das Mikrobiom ein wichtiger Faktor für die Entstehung von Asthma bronchiale und Allergien sein könnte. Diese Studien beruhen auf neuen DNA-basierten Sequenzierungstechniken, die einen tiefen Einblick in die mikrobielle Vielfalt in unserer Umwelt und auf bzw. in unseren Körperoberflächen erlauben. Das Umweltmikrobiom in Innenräumen wird zu einem großen Teil aus der äußeren Umwelt definiert, aber zu einem wesentlichen Teil auch durch das Mikrobiom seiner humanen und tierischen Einwohner bestimmt. Dass das Umweltmikrobiom eine wesentliche Rolle bei der Entstehung von Asthma und Allergien spielen kann, geht am deutlichsten aus den Bauernstudien hervor. Diese haben wiederholt einen erheblichen Schutz vor der Entstehung dieser Krankheiten bei den Kindern gezeigt, die eine hohe mikrobielle Exposition aufweisen. Dabei hat es den Anschein, dass es nicht einzelne Keime sind, die dies bewirken, sondern vielmehr ein mikrobieller Cocktail aus Umweltbakterien und -schimmelpilzen. Der stärkste Schutz findet sich bei Kindern der Amischen, die eine sehr traditionelle Landwirtschaft betreiben. In dieser Bevölkerungsgruppe ist der Heuschnupfen eine Rarität, die allergische Sensibilisierung etwa 6‑mal seltener als bei Stadtkindern in Deutschland, und virusinduzierte obstruktive Bronchitiden ohne Progression in ein allergisches Asthma herrschen vor.

Abstract

There is accumulating evidence from population-based and experimental studies to suggest that the microbiome could play a significant role in the development of asthma and allergies. These studies used novel DNA-based sequencing techniques, which conferred a deep insight into the microbial diversity in the environment as well as on body surfaces. The environmental microbiome indoors is determined to a great extent by outdoor exposure and to a significant extent also from human and animal home occupants. The strongest evidence for an important role of the environmental microbiome for protection from asthma and allergies comes from studies enrolling farm and non-farm children. These studies have consistently and repeatedly shown a significant reduction in asthma and allergy risks in farm children who are exposed to an environment rich in microbes. In these environments protection is conferred not by one microbe but more by a cocktail of bacteria and fungi. The strongest effect has been seen among children from Amish populations, which live a very traditional farming lifestyle. Among these children hay fever is almost non-existent, atopic sensitization about 6‑fold lower than among children living in German cities and virus-induced wheezing lower respiratory tract diseases do not progress to allergic asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Arnold IC, Dehzad N, Reuter S et al (2011) Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest 121:3088–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ball TM, Castro-Rodriguez JA, Griffith KA et al (2000) Siblings, day-care attendance, and the risk of asthma and wheezing during childhood. N Engl J Med 343:538–543

    Article  CAS  PubMed  Google Scholar 

  3. Barberan A, Dunn RR, Reich BJ et al (2015) The ecology of microscopic life in household dust. Proc Biol Sci 282:20151139

    Article  PubMed Central  Google Scholar 

  4. Birzele LT, Depner M, Ege MJ et al (2017) Environmental and mucosal microbiota and their role in childhood asthma. Allergy 72:109–119

    Article  CAS  PubMed  Google Scholar 

  5. Braun-Fahrlander C, Gassner M, Grize L et al (1999) Prevalence of hay fever and allergic sensitization in farmer’s children and their peers living in the same rural community. SCARPOL team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution. Clin Exp Allergy 29:28–34

    Article  CAS  PubMed  Google Scholar 

  6. Braun-Fahrlander C, Riedler J, Herz U et al (2002) Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 347:869–877

    Article  PubMed  Google Scholar 

  7. Cardenas PA, Cooper PJ, Cox MJ et al (2012) Upper airways microbiota in antibiotic-naive wheezing and healthy infants from the tropics of rural Ecuador. PLOS ONE 7:e46803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Celedon JC, Milton DK, Ramsey CD et al (2007) Exposure to dust mite allergen and endotoxin in early life and asthma and atopy in childhood. J Allergy Clin Immunol 120:144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Charlson ES, Bittinger K, Haas AR et al (2011) Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 184:957–963

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen CM, Gehring U, Wickman M et al (2008) Domestic cat allergen and allergic sensitisation in young children. Int J Hyg Environ Health 211:337–344

    Article  PubMed  Google Scholar 

  11. Conrad ML, Ferstl R, Teich R et al (2009) Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J Exp Med 206:2869–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Debarry J, Garn H, Hanuszkiewicz A et al (2007) Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J Allergy Clin Immunol 119:1514–1521

    Article  PubMed  Google Scholar 

  13. Depner M, Ege MJ, Cox MJ et al (2016) Bacterial microbiota of the upper respiratory tract and childhood asthma. J Allergy Clin Immunol. doi:10.1016/j.jaci.2016.05.050

    Google Scholar 

  14. Ege MJ, Frei R, Bieli C et al (2007) Not all farming environments protect against the development of asthma and wheeze in children. J Allergy Clin Immunol 119:1140–1147

    Article  PubMed  Google Scholar 

  15. Ege MJ, Mayer M, Normand AC et al (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364:701–709

    Article  CAS  PubMed  Google Scholar 

  16. Fujimura KE, Demoor T, Rauch M et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA 111:805–810

    Article  CAS  PubMed  Google Scholar 

  17. Genuneit J, Strachan DP, Buchele G et al (2013) The combined effects of family size and farm exposure on childhood hay fever and atopy. Pediatr Allergy Immunol 24:293–298

    Article  PubMed  Google Scholar 

  18. Green BJ, Wiriyachaiporn S, Grainge C et al (2014) Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLOS ONE 9:e100645

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hilty M, Burke C, Pedro H et al (2010) Disordered microbial communities in asthmatic airways. PLOS ONE 5:e8578

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang YJ, Nelson CE, Brodie EL et al (2011) Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 127:372–381.e3

    Article  PubMed  Google Scholar 

  21. Legatzki A, Rosler B, Von Mutius E (2014) Microbiome diversity and asthma and allergy risk. Curr Allergy Asthma Rep 14:466

    Article  PubMed  Google Scholar 

  22. Marri PR, Stern DA, Wright AL et al (2013) Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 131:346–352.e3

    Article  CAS  PubMed  Google Scholar 

  23. Mazmanian SK, Liu CH, Tzianabos AO et al (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118

    Article  CAS  PubMed  Google Scholar 

  24. Ownby DR, Johnson CC, Peterson EL (2002) Exposure to dogs and cats in the first year of life and risk of allergic sensitization at 6 to 7 years of age. JAMA 288:963–972

    Article  PubMed  Google Scholar 

  25. Radon K, Windstetter D, Eckart J et al (2004) Farming exposure in childhood, exposure to markers of infections and the development of atopy in rural subjects. Clin Exp Allergy 34:1178–1183

    Article  CAS  PubMed  Google Scholar 

  26. Riedler J, Braun-Fahrlander C, Eder W et al (2001) Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 358:1129–1133

    Article  CAS  PubMed  Google Scholar 

  27. Stein MM, Hrusch CL, Gozdz J et al (2016) Innate immunity and asthma risk in Amish and Hutterite farm children. N Engl J Med 375:411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steinmeyer S, Lee K, Jayaraman A et al (2015) Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr Allergy Asthma Rep 15:24

    Article  CAS  PubMed  Google Scholar 

  29. Trompette A, Gollwitzer ES, Yadava K et al (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med 20:159–166

    Article  CAS  PubMed  Google Scholar 

  30. Ursell LK, Clemente JC, Rideout JR et al (2012) The interpersonal and intrapersonal diversity of human-associated microbiota in key body sites. J Allergy Clin Immunol 129:1204–1208

    Article  PubMed  PubMed Central  Google Scholar 

  31. Van Strien RT, Engel R, Holst O et al (2004) Microbial exposure of rural school children, as assessed by levels of N‑acetyl-muramic acid in mattress dust, and its association with respiratory health. J Allergy Clin Immunol 113:860–867

    Article  PubMed  Google Scholar 

  32. Von Mutius E (2007) Allergies, infections and the hygiene hypothesis – the epidemiological evidence. Immunobiology 212:433439

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. von Mutius.

Ethics declarations

Interessenkonflikt

E. von Mutius gibt an, dass kein Interessenkonflikt besteht.

Sämtliche epidemiologischen Analysen sind unter strikter Einhaltung des Datenschutzes und nur nach schriftlicher Einwilligung der Eltern der Kinder durchgeführt worden. Sämtliche Untersuchungen hatten die Zustimmung der Ethik Kommissionen der teilnehmenden Zentren.

Additional information

Redaktion

F. Zepp, Mainz

E. von Mutius ist CPC-M, Member of the German Center For Lung Research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Mutius, E. Umweltmikrobiom. Monatsschr Kinderheilkd 165, 389–394 (2017). https://doi.org/10.1007/s00112-017-0271-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-017-0271-7

Schlüsselwörter

Keywords

Navigation