Skip to main content
Log in

Klinische Symptome und Pathogenese der Typ-1-Interferonopathien

Clinical symptoms and pathogenesis of type I interferonopathies

  • Originalien
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Die Typ-1-Interferonopathien stellen eine Gruppe genetisch bedingter seltener Erkrankungen dar, die durch eine Fehlfunktion des angeborenen Immunsystems hervorgerufen werden. Gemeinsames Kennzeichen ist eine Dysregulation der antiviralen Typ-1-Interferon(IFN)-Achse, die zu einer konstitutiven Typ-1-IFN-Aktivierung führt. Als systemisch-entzündliche Erkrankungen ist das klinische Spektrum der Typ-1-Interferonopathien sehr breit und sowohl durch Autoinflammation als auch durch Autoimmunität gekennzeichnet. Hierbei stehen neurologische und kutane Manifestationen im Vordergrund. Pathogenetisch liegen den Typ-1-Interferonopathien Störungen im Metabolismus und in der immunologischen Erkennung von intrazellulären Nukleinsäuren zugrunde. Unser derzeitiges Verständnis der molekularen Pathogenese der Typ-1-Interferonopathien weist darauf hin, dass eine immunmodulatorische Intervention, die der inadäquaten Typ-1-IFN-Aktvierung entgegenwirkt, therapeutisch wirksam sein könnte.

Abstract

Type 1 interferonopathies represent a group of genetically determined rare diseases caused by defects of the innate immune system. Central to all type 1 interferonopathies is a dysregulation of the antiviral type 1 interferon (IFN) axis, which results in constitutive overproduction of type 1 IFN. All type 1 interferonopathies present as systemic inflammatory disorders characterized by autoinflammation and autoimmunity. Although the clinical spectrum is highly variable and broad, neurological and cutaneous manifestations represent the most salient findings. Chronic type 1 IFN activation is due to defects in pathways affecting the metabolism or the immune recognition of intracellular nucleic acids. The current understanding of the molecular mechanisms underlying type 1 interferonopathies indicates that an immunomodulatory intervention targeting the type 1 IFN axis might be of therapeutic value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Abbreviations

ADAR:

„adenosine deaminase, RNA-specific“

AGS:

Aicardi-Goutières-Syndrom

CANDLE:

„chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature“

cGAMP:

„cyclic GMP-AMP“

cGAS:

„cyclic GMP-AMP synthase“

dNTP:

Desoxynukleosidtriphosphat

dsRNA:

doppelsträngige RNA

ESPED:

Erhebungseinheit für seltene pädiatrische Erkrankungen in Deutschland

IFIH1:

„interferon induced with helicase C domain 1“

IFN:

Interferon

IFNAR:

„interferon-alpha receptor“

IFNB:

Interferon-β-Gen

IRF:

„interferon regulatory factor“

ISG15:

„interferon-stimulated protein 15“

JAK:

Januskinase

MAVS:

„mitochondrial antiviral signaling protein“

MDA5:

„melanoma differentiation-associated gene 5“

MHC:

„major histocompatibility complex“

NF-κB:

„nuclear factor ‚kappa-light-chain-enhancer‘ of activated B-cells“

RIG-I:

„retinoic acid-inducible gene 1“

RNASEH2:

„ribonuclease H2“

RVCL:

„retinal vasculopathy with cerebral leukodystrophy“

SAMHD1:

„SAM domain and HD domain-containing protein 1“

SAVI:

„STING-associated vasculopathy, infantile-onset“

SLE:

systemischer Lupus erythematodes

SPENCD:

Spondyloenchondrodysplasie

ssDNA:

einzelsträngige DNA

STAT:

„signal transducers and activators of transcription“

STING:

„stimulator of interferon genes“

TLR:

„toll-like receptor“

TMEM173:

„transmembrane protein 173“

TRAP:

tartratresistente saure Phosphatase 5

TREX1:

“3‘ repair exonuclease 1“

Literatur

  1. Stetson DB, Medzhitov R (2006) Type I interferons in host defense. Immunity 25:373–381

    Article  CAS  PubMed  Google Scholar 

  2. O’Neill LA, Golenbock D, Bowie AG (2013) The history of Toll-like receptors – redefining innate immunity. Nat Rev Immunol 13:453–460

    Article  Google Scholar 

  3. Atianand MK, Fitzgerald KA (2013) Molecular basis of DNA recognition in the immune system. J Immunol 190:1911–1918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ivashkiv LB, Donlin LT (2014) Regulation of type I interferon responses. Nat Rev Immunol 14:36–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Marshak-Rothstein A (2006) Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 6:823–835

    Article  CAS  PubMed  Google Scholar 

  6. Ronnblom L, Pascual V (2008) The innate immune system in SLE: type I interferons and dendritic cells. Lupus 17:394–399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Crow YJ (2011) Type I interferonopathies: a novel set of inborn errors of immunity. Ann N Y Acad Sci 1238:91–98

    Article  CAS  PubMed  Google Scholar 

  8. Lee-Kirsch MA, Wolf C, Kretschmer S et al (2015) Type I interferonopathies – an expanding disease spectrum of immunodysregulation. Semin Immunopathol 37:349–357

    Article  CAS  PubMed  Google Scholar 

  9. Aicardi J, Goutières F (1984) A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis. Ann Neurol 15:49–54

    Article  CAS  PubMed  Google Scholar 

  10. Rice GI, Forte GM, Szynkiewicz M et al (2013) Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol 12:1159–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ramantani G, Kohlhase J, Hertzberg C et al (2010) Expanding the phenotypic spectrum of lupus erythematosus in Aicardi-Goutières syndrome. Arthritis Rheum 62:1469–1477

    Article  CAS  PubMed  Google Scholar 

  12. Vogt J, Agrawal S, Ibrahim Z et al (2013) Striking intrafamilial phenotypic variability in Aicardi-Goutières syndrome associated with the recurrent Asian founder mutation in RNASEH2C. Am J Med Genet A 161A:338–342

    Article  PubMed  Google Scholar 

  13. Tüngler V, Schmidt F, Hieronimus S et al (2014) Phenotypic variability in a family with Aicardi-Goutières syndrome due to the common A177T RNASEH2B mutation. Case Rep Clin Med 3:153–156

    Article  Google Scholar 

  14. Tüngler V, Silver RM, Walkenhorst H et al (2012) Inherited or de novo mutation affecting aspartate 18 of TREX1 results in either familial chilblain lupus or Aicardi-Goutières syndrome. Br J Dermatol 167:212–214

    Article  PubMed  Google Scholar 

  15. Reijns MA, Rabe B, Rigby RE et al (2012) Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008–1022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gunther C, Kind B, Reijns MA et al (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 125:413–424

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kretschmer S, Wolf C, König N et al (2014) SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 74:e17

    Article  PubMed Central  PubMed  Google Scholar 

  18. Beloglazova N, Flick R, Tchigvintsev A et al (2013) Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction. J Biol Chem 288:8101–8110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rice GI, Kasher PR, Forte GM et al (2012) Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat Genet 44:1243–1248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Rice GI, Del Toro DY, Jenkinson EM et al (2014) Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat Genet 46:503–509

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Richards A, Maagdenberg AM van den, Jen JC et al (2007) C-terminal truncations in human 3’–5‘ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070

    Article  CAS  PubMed  Google Scholar 

  22. Schuh E, Ertl-Wagner B, Lohse P et al (2015) Multiple sclerosis-like lesions and type I interferon signature in a patient with RVCL. Neurol Neuroimmunol Neuroinflamm 2:e55

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lee-Kirsch MA, Gong M, Schulz H et al (2006) Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 79:731–737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Rice G, Newman WG, Dean J et al (2007) Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 80:811–815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Lee-Kirsch MA, Chowdhury D, Harvey S et al (2007) A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med (Berl) 85:531–537

    Google Scholar 

  26. Dale RC, Gornall H, Singh-Grewal D et al (2010) Familial Aicardi-Goutières syndrome due to SAMHD1 mutations is associated with chronic arthropathy and contractures. Am J Med Genet A 152A:938–942

    Article  PubMed  Google Scholar 

  27. Harley IT, Kaufman KM, Langefeld CD et al (2009) Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 10:285–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Niewold TB (2008) Interferon alpha-induced lupus: proof of principle. J Clin Rheumatol 14:131–132

    Article  PubMed Central  PubMed  Google Scholar 

  29. Baechler EC, Batliwalla FM, Karypis G et al (2003) Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 100:2610–2615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Yasutomo K, Horiuchi T, Kagami S et al (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314

    Article  CAS  PubMed  Google Scholar 

  31. Al-Mayouf SM, Sunker A, Abdwani R et al (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188

    Article  CAS  PubMed  Google Scholar 

  32. Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456

    Article  CAS  PubMed  Google Scholar 

  33. Lee-Kirsch MA, Gong M, Chowdhury D et al (2007) Mutations in the gene encoding the 3’–5‘ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Jesus AA, Marrero B et al (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518

    Article  PubMed Central  PubMed  Google Scholar 

  35. Jeremiah N, Neven B, Gentili M et al (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lausch E, Janecke A, Bros M et al (2011) Genetic deficiency of tartrate-resistant acid phosphatase associated with skeletal dysplasia, cerebral calcifications and autoimmunity. Nat Genet 43:132–137

    Article  CAS  PubMed  Google Scholar 

  37. Briggs TA, Rice GI, Daly S et al (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131

    Article  CAS  PubMed  Google Scholar 

  38. Rutsch F, MacDougall M, Lu C et al (2015) A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet 96:275–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Jang MA, Kim EK, Now H et al (2015) Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet 96:266–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhang X, Bogunovic D, Payelle-Brogard B et al (2015) Human intracellular ISG15 prevents interferon-alpha/beta over-amplification and auto-inflammation. Nature 517:89–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Liu Y, Ramot Y, Torrelo A et al (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64:895–907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Diesterheft, M. Schuster, A. Rösen-Wolff, R. Berner, V. Tüngler, M. Lee-Kirsch geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lee-Kirsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diesterheft, M., Schuster, M., Rösen-Wolff, A. et al. Klinische Symptome und Pathogenese der Typ-1-Interferonopathien. Monatsschr Kinderheilkd 163, 1260–1268 (2015). https://doi.org/10.1007/s00112-015-3478-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-015-3478-5

Schlüsselwörter

Keywords

Navigation