Skip to main content
Log in

Therapie spastischer Gangstörungen im Wachstum

Therapy of spastic gait disorders in adolescents

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Bei Patienten mit spastischen Bewegungsstörungen liegt immer auch eine Schwäche vor, die möglicherweise wichtiger als die Spastizität ist. Schwächende Maßnahmen müssen deshalb grundsätzlich sehr vorsichtig indiziert werden. Die klinische Beurteilung der Muskelfunktion deckt sich schlecht mit den funktionellen Problemen. Wenn möglich, sollte deshalb die Funktion selbst vermessen werden. Für das Gehen ist Stabilität im Standbein wesentlich; hierfür sind Plantarflexorenkraft und ein stabiler Fuß als Hebel nötig. Spitzfüßigkeit verkürzt den Hebel ebenso wie Fußdeformitäten. Die Füße müssen deshalb gestützt und kontrolliert werden; hierzu werden Orthesen eingesetzt. Diese funktionellen Orthesen müssen biomechanisch optimal aufgebaut sein, da sie sonst mehr schaden als nützen. Mit Erreichen der skeletalen Reife können orthopädisch-chirurgische Maßnahmen in vielen Fällen diese Orthesen ersetzen. Als biomechanische Zielvorgaben werden 90° (Schuhsole gegen Unterschenkelachse) – 0° (Kniestreckung) – 0° (Hüftstreckung) angestrebt. Vor allem bei Zehengang mit korrekt eingestelltem Fuß muss über eine Verlängerung/Schwächung der Kniebeuger (ischiokrurale Muskeln, Mm. gastrocnemii) entschieden werden.

Abstract

Spastic motor disorders usually present with weakness which is possibly more important than spasticity. The indications for measures causing weakening must therefore be evaluated very carefully. The clinical assessment of muscle function only poorly correlates with functional problems, hence function should be measured if possible. Stability of the stance leg is essential for walking which is provided by powerful plantar flexors and a stable foot as a lever arm. Equinus deformity shortens this lever arm as well as foot deformities. For this purpose the feet need to be supported and well controlled. Both tasks are provided by orthotic devices. Functional orthotics must be constructed optimally considering biomechanics as otherwise small deviations can cause more damage than benefits. Once a patient is almost skeletally mature, surgery can replace orthotics in many cases. The biomechanical aim is always 90° foot against shank axis, 0° knee extension and 0° hip extension. If toe walking persists after positioning the foot correctly, weakening the knee flexors (hamstrings and gastrocnemii muscles) may be an option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Schweizer K, Romkes J, Brunner R (2013) The influence of muscle strength on the Gait Profile Score (GPS) across different patients. Gait Posture 39:80–85

    Article  PubMed  Google Scholar 

  2. Brunner R, Romkes J (2008) Abnormal EMG muscle activity during gait in patients without neurological disorders. Gait Posture 27:399–407

    Article  CAS  PubMed  Google Scholar 

  3. Schweizer K, Romkes J, Brunner R (2013) The association between premature plantarflexor muscle activity, muscle strength, and equinus gait in patients with various pathologies. Res Dev Disabil 34:2676–2683. DOI 10.1016/j.ridd.2013.05.025

    Article  PubMed  Google Scholar 

  4. Carriero A, Jonkers I, Shefelbine SJ (2011) Mechanobiological prediction of proximal femoral deformities in children with cerebral palsy. Comput Methods Biomech Biomed Engin 14:253–262. DOI 10.1080/10255841003682505

    Article  PubMed  Google Scholar 

  5. Radler C, Kranzl A, Manner HM et al (2010) Torsional profile versus gait analysis: consistency between the anatomic torsion and the resulting gait pattern in patients with rotational malalignment of the lower extremity. Gait Posture 32:405–410. DOI 10.1016/j.gaitpost.2010.06.019

    Article  PubMed  Google Scholar 

  6. Brunner R, Dreher T, Romkes J, Frigo C (2008) Effects of plantarflexion on pelvis and lower limb kinematics. Gait Posture 28:150–156

    Article  CAS  PubMed  Google Scholar 

  7. Gaston MS, Rutz E, Dreher T, Brunner R (2011) Transverse plane rotation of the foot and transverse hip and pelvic kinematics in diplegic cerebral palsy. Gait Posture 34:218–221. DOI 10.1016/j.gaitpost.2011.05.001

    Article  CAS  PubMed  Google Scholar 

  8. Frigo C, Pavan EE, Brunner R (2010) A dynamic model of quadriceps and hamstrings function. Gait Posture 31:100–103. DOI 10.1016/j.gaitpost.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Mawase F, Bar-Haim S, Karniel A (2011) Lack of predictive control in lifting series of virtual objects by individuals with diplegic cerebral palsy. IEEE Trans Neural Syst Rehabil Eng 19:686–695. DOI 10.1109/TNSRE.2011.2170589

    Article  PubMed  Google Scholar 

  10. Rigoldi C, Molteni E, Rozbaczylo C et al (2012) Movement analysis and EEG recordings in children with hemiplegic cerebral palsy. Exp Brain Res 223:517–524. DOI 10.1007/s00221-012-3278-2

    Article  PubMed  Google Scholar 

  11. Ounpuu S, Gage JR, Davis RB (1991) Three-dimensional lower extremity joint kinetics in normal pediatric gait. J Pediatr Orthop 11:341–349

    Article  CAS  PubMed  Google Scholar 

  12. Baddar A, Granata K, Damiano DL et al (2002) Ankle and knee coupling in patients with spastic diplegia: effects of gastrocnemius-soleus lengthening. J Bone Joint Surg Am 84-A:736–744

  13. Novacheck TF, Gage JR (2007) Orthopedic management of spasticity in cerebral palsy. Childs Nerv Syst 23:1015–1031. DOI 10.1007/s00381-007-0378-6

    Article  PubMed  Google Scholar 

  14. Zajac FE, Gordon ME (1989) Determining muscle’s force and action in multi-articular movement. Exerc Sport Sci Rev 17:187–230

    CAS  PubMed  Google Scholar 

  15. Brunner R, Rutz P (2013) Biomechanics and muscle function during gait. J Child Orthop 7:367–371

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. De Pellegrin M (2005) Subtalar screw-arthroereisis for correction of flat foot in children. Orthopade 34:941–953. DOI 10.1007/s00132-005-0835-4 (quiz 954)

    Article  Google Scholar 

  17. Rutz E, Gaston MS, Tirosh O, Brunner R (2012) Hip flexion deformity improves without psoas-lengthening after surgical correction of fixed knee flexion deformity in spastic diplegia. Hip Int 22:379–386. DOI 10.5301/HIP.2012.9453

    Article  PubMed  Google Scholar 

  18. Novacheck TF, Stout JL, Gage JR, Schwartz MH (2009) Distal femoral extension osteotomy and patellar tendon advancement to treat persistent crouch gait in cerebral palsy. Surgical technique. J Bone Joint Surg Am 91(Suppl 2):271–286. DOI 10.2106/JBJS.I.00316

    PubMed  Google Scholar 

  19. Rutz E, Hofmann E, Brunner R (2010) Preoperative botulinum toxin test injections before muscle lengthening in cerebral palsy. J Orthop Sci 15:647–653. DOI 10.1007/s00776-010-1509-6

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Brunner gibt an, dass kein Interessenkonflikt besteht. Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Brunner FRCS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunner, R. Therapie spastischer Gangstörungen im Wachstum. Monatsschr Kinderheilkd 162, 1004–1009 (2014). https://doi.org/10.1007/s00112-013-3050-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-013-3050-0

Schlüsselwörter

Keywords

Navigation